• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.sequence_mask函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.sequence_mask函数的典型用法代码示例。如果您正苦于以下问题:Python sequence_mask函数的具体用法?Python sequence_mask怎么用?Python sequence_mask使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了sequence_mask函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: sovle_problem_1

def sovle_problem_1():
    input = tf.constant([range(5),
                         np.array(range(5)) + 1,
                         np.array(range(5)) + 2])
    '''
        input = [ [0, 1, 2, 3, 4],
                  [1, 2, 3, 4, 5],
                  [2, 3, 4, 5, 6]
                ]
    '''
    input = tf.constant([
        [0.99, 0.8, 0.7, 0.5, 0.5],
        [0.2, 0.3, 0.6, 0.7, 0.8],
        [0.1, 0.1, 0.1, 0.5, 1]
    ])
    sess = tf.Session()
    mask = tf.cast(tf.cast(tf.greater(input, 3), tf.int32), tf.float32)


    start_label = tf.constant(np.array([0, 2, 3]))
    start_label = tf.sequence_mask(start_label, 5, dtype=tf.int32) # not include the index

    end_label = tf.constant(np.array([2, 4, 3]))
    end_label = tf.sequence_mask(end_label+1, 5, dtype=tf.int32)

    res = end_label - start_label

    log_loss = tf.losses.log_loss(res, input)

    print sess.run([mask, start_label, end_label, res, log_loss])
开发者ID:Accagain2014,项目名称:ML,代码行数:30,代码来源:tensorflow_examples.py


示例2: get_start_end_seq_mask

def get_start_end_seq_mask(seq_len=5, length=3):
  '''

  :param seq_len: n_ctx
  :param length: ans_avg_len
  :return:
  '''
  s = tf.constant(np.array(range(seq_len)))  # [0, 1, ..., seq_len-1]
  s = tf.expand_dims(s, axis=-1)  # [[0], [1], ..., [seq_len-1]]
  s = tf.tile(s, [1, length])  # [[0, 0, 0], [1, 1, 1], ..., [seq_len-1, seq_len-1, seq_len-1]]
  s = tf.concat(tf.unstack(s, axis=0), axis=0)  # [0, 0, 0, 1, 1, 1, 2, 2, 2, ..., 4, 4, 4]

  gap = tf.constant(np.array(range(length)))  # [0, 1, 2]
  gap = tf.tile(gap, [seq_len])  # [0, 1, 2, 0, 1, 2, ..., 0, 1, 2]

  e = s + gap  # [0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5,  ... ]
  s_mask = tf.cast(tf.sequence_mask(s+1, seq_len, dtype=tf.int32), tf.float32)  #
  s_mask_ = tf.cast(tf.sequence_mask(s, seq_len, dtype=tf.int32), tf.float32)
  s_mask = s_mask - s_mask_

  e_mask = tf.cast(tf.sequence_mask(e + 1, seq_len, dtype=tf.int32), tf.float32)
  e_mask_ = tf.cast(tf.sequence_mask(e, seq_len, dtype=tf.int32), tf.float32)
  e_mask = e_mask - e_mask_

  #res = e_mask - s_mask
  res = e_mask + s_mask
  res = res / tf.reduce_sum(res, axis=-1, keepdims=True)
  res = 2.0 * res
  return res
开发者ID:Accagain2014,项目名称:ML,代码行数:29,代码来源:tensorflow_examples.py


示例3: pad_with_identity

def pad_with_identity(x, sequence_length, max_sequence_length, identity_values=0):
  """Pads a tensor with identity values up to :obj:`max_sequence_length`.

  Args:
    x: A ``tf.Tensor`` of shape ``[batch_size, max(sequence_length), depth]``.
    sequence_length: The true sequence length of :obj:`x`.
    max_sequence_length: The sequence length up to which the tensor must contain
      :obj:`identity values`.
    identity_values: The identity value.

  Returns:
    A ``tf.Tensor`` of shape ``[batch_size, max(max_sequence_length), depth]``.
  """
  maxlen = tf.reduce_max(max_sequence_length)

  mask = tf.sequence_mask(sequence_length, maxlen=maxlen, dtype=x.dtype)
  mask = tf.expand_dims(mask, axis=-1)
  mask_combined = tf.sequence_mask(max_sequence_length, dtype=x.dtype)
  mask_combined = tf.expand_dims(mask_combined, axis=-1)

  identity_mask = mask_combined * (1.0 - mask)

  x = pad_in_time(x, maxlen - tf.shape(x)[1])
  x = x * mask + (identity_mask * identity_values)

  return x
开发者ID:yhgon,项目名称:OpenNMT-tf,代码行数:26,代码来源:reducer.py


示例4: sequence_mask

def sequence_mask(input_lengths, max_len=None, expand=True):
	if max_len is None:
		max_len = tf.reduce_max(input_lengths)

	if expand:
		return tf.expand_dims(tf.sequence_mask(input_lengths, max_len, dtype=tf.float32), axis=-1)
	return tf.sequence_mask(input_lengths, max_len, dtype=tf.float32)
开发者ID:duvtedudug,项目名称:Tacotron-2,代码行数:7,代码来源:util.py


示例5: sequence_mask

def sequence_mask(lengths, r, expand=True):
	'''Returns a 2-D or 3-D tensorflow sequence mask depending on the argument 'expand'
	'''
	max_len = tf.reduce_max(lengths)
	max_len = _round_up_tf(max_len, tf.convert_to_tensor(r))
	if expand:
		return tf.expand_dims(tf.sequence_mask(lengths, maxlen=max_len, dtype=tf.float32), axis=-1)
	return tf.sequence_mask(lengths, maxlen=max_len, dtype=tf.float32)
开发者ID:duvtedudug,项目名称:Tacotron-2,代码行数:8,代码来源:modules.py


示例6: testNormal

  def testNormal(self):
    with self.test_session():
      res = tf.sequence_mask(tf.constant([1, 3, 2]), 5)
      self.assertAllEqual(res.get_shape(), [3, 5])
      self.assertAllEqual(res.eval(), [[True, False, False, False, False],
                                       [True, True, True, False, False],
                                       [True, True, False, False, False]])

      # test dtype and default maxlen:
      res = tf.sequence_mask(tf.constant([0, 1, 4]), dtype=tf.float32)
      self.assertAllEqual(res.get_shape().as_list(), [3, None])
      self.assertAllEqual(res.eval(), [[0.0, 0.0, 0.0, 0.0],
                                       [1.0, 0.0, 0.0, 0.0],
                                       [1.0, 1.0, 1.0, 1.0]])
开发者ID:Qstar,项目名称:tensorflow,代码行数:14,代码来源:array_ops_test.py


示例7: attend

def attend(x, sequence_length=None, method="ave", context=None, feature_dim=None, mask_zero=False, maxlen=None,
           epsilon=1e-8, bn=True, training=False, seed=0, reuse=True, name="attend"):
    if method == "ave":
        if mask_zero:
            # None * step_dim
            mask = tf.sequence_mask(sequence_length, maxlen)
            mask = tf.reshape(mask, (-1, tf.shape(x)[1], 1))
            mask = tf.cast(mask, tf.float32)
            z = tf.reduce_sum(x * mask, axis=1)
            l = tf.reduce_sum(mask, axis=1)
            # in some cases especially in the early stages of training the sum may be almost zero
            z /= tf.cast(l + epsilon, tf.float32)
        else:
            z = tf.reduce_mean(x, axis=1)
    elif method == "sum":
        if mask_zero:
            # None * step_dim
            mask = tf.sequence_mask(sequence_length, maxlen)
            mask = tf.reshape(mask, (-1, tf.shape(x)[1], 1))
            mask = tf.cast(mask, tf.float32)
            z = tf.reduce_sum(x * mask, axis=1)
        else:
            z = tf.reduce_sum(x, axis=1)
    elif method == "max":
        if mask_zero:
            # None * step_dim
            mask = tf.sequence_mask(sequence_length, maxlen)
            mask = tf.expand_dims(mask, axis=-1)
            mask = tf.tile(mask, (1, 1, tf.shape(x)[2]))
            masked_data = tf.where(tf.equal(mask, tf.zeros_like(mask)),
                                   tf.ones_like(x) * -np.inf, x)  # if masked assume value is -inf
            z = tf.reduce_max(masked_data, axis=1)
        else:
            z = tf.reduce_max(x, axis=1)
    elif method == "attention":
        if context is not None:
            step_dim = tf.shape(x)[1]
            context = tf.expand_dims(context, axis=1)
            context = tf.tile(context, [1, step_dim, 1])
            y = tf.concat([x, context], axis=-1)
        else:
            y = x
        a = attention(y, feature_dim, sequence_length, mask_zero, maxlen, seed=seed)
        z = tf.reduce_sum(x * a, axis=1)
    if bn:
        # training=False has slightly better performance
        z = tf.layers.BatchNormalization()(z, training=False)
        # z = batch_normalization(z, training=training, name=name)
    return z
开发者ID:jkhlot,项目名称:tensorflow-XNN,代码行数:49,代码来源:nn_module.py


示例8: attention

def attention(queries, keys, keys_length):
  '''
    queries:     [B, H]
    keys:        [B, T, H]
    keys_length: [B]
  '''
  queries_hidden_units = queries.get_shape().as_list()[-1]
  queries = tf.tile(queries, [1, tf.shape(keys)[1]])
  queries = tf.reshape(queries, [-1, tf.shape(keys)[1], queries_hidden_units])
  din_all = tf.concat([queries, keys, queries-keys, queries*keys], axis=-1)
  d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att')
  d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att')
  d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att')
  d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(keys)[1]])
  outputs = d_layer_3_all 
  # Mask
  key_masks = tf.sequence_mask(keys_length, tf.shape(keys)[1])   # [B, T]
  key_masks = tf.expand_dims(key_masks, 1) # [B, 1, T]
  paddings = tf.ones_like(outputs) * (-2 ** 32 + 1)
  outputs = tf.where(key_masks, outputs, paddings)  # [B, 1, T]

  # Scale
  outputs = outputs / (keys.get_shape().as_list()[-1] ** 0.5)

  # Activation
  outputs = tf.nn.softmax(outputs)  # [B, 1, T]

  # Weighted sum
  outputs = tf.matmul(outputs, keys)  # [B, 1, H]

  return outputs
开发者ID:13162201530,项目名称:DeepInterestNetwork,代码行数:31,代码来源:model.py


示例9: calculate_outputs

    def calculate_outputs(self, x):
        h = lstm_layer(x, self.history_length, self.lstm_size, scope='lstm-1')
        h = tf.concat([h, x], axis=2)
        h_final = time_distributed_dense_layer(h, 50, activation=tf.nn.relu, scope='dense-1')

        n_components = 1
        params = time_distributed_dense_layer(h_final, n_components*2, scope='dense-2', activation=None)
        ps, mixing_coefs = tf.split(params, 2, axis=2)

        # this is implemented incorrectly, but it still helped...
        mixing_coefs = tf.nn.softmax(mixing_coefs - tf.reduce_min(mixing_coefs, 2, keep_dims=True))
        ps = tf.nn.sigmoid(ps)

        labels = tf.tile(tf.expand_dims(self.next_is_ordered, 2), (1, 1, n_components))
        losses = tf.reduce_sum(mixing_coefs*log_loss(labels, ps), axis=2)
        sequence_mask = tf.cast(tf.sequence_mask(self.history_length, maxlen=100), tf.float32)
        avg_loss = tf.reduce_sum(losses*sequence_mask) / tf.cast(tf.reduce_sum(self.history_length), tf.float32)

        final_temporal_idx = tf.stack([tf.range(tf.shape(self.history_length)[0]), self.history_length - 1], axis=1)
        self.final_states = tf.gather_nd(h_final, final_temporal_idx)

        self.prediction_tensors = {
            'user_ids': self.user_id,
            'product_ids': self.product_id,
            'final_states': self.final_states
        }

        return avg_loss
开发者ID:dengminna,项目名称:instacart-basket-prediction,代码行数:28,代码来源:rnn_product_bmm.py


示例10: reduce_sequence

  def reduce_sequence(self, inputs, sequence_lengths):
    axis = self.axis % inputs[0].shape.ndims

    if axis == 2:
      padded, combined_length = pad_n_with_identity(inputs, sequence_lengths)
      return self.reduce(padded), combined_length
    elif axis == 1:
      # Pad all input tensors up to maximum combined length.
      combined_length = tf.add_n(sequence_lengths)
      maxlen = tf.reduce_max(combined_length)
      padded = [pad_in_time(x, maxlen - tf.shape(x)[1]) for x in inputs]

      current_length = None
      accumulator = None

      for elem, length in zip(padded, sequence_lengths):
        # Make sure padding are 0 vectors as it is required for the next step.
        mask = tf.sequence_mask(length, maxlen=maxlen, dtype=elem.dtype)
        elem = elem * tf.expand_dims(mask, -1)

        if accumulator is None:
          accumulator = elem
          current_length = length
        else:
          accumulator += roll_sequence(elem, current_length)
          current_length += length

      return accumulator, combined_length
    else:
      raise ValueError("Unsupported concatenation on axis {}".format(axis))
开发者ID:yhgon,项目名称:OpenNMT-tf,代码行数:30,代码来源:reducer.py


示例11: call

    def call(self, inputs, **kwargs):
        query_key_keylen_list = inputs
        queries, keys, keys_length = query_key_keylen_list
        hist_len = keys.get_shape()[1]

        attention_score = LocalActivationUnit(
            self.hidden_size, self.activation, 0, 1, False, 1024,)([queries, keys])

        outputs = tf.transpose(attention_score, (0, 2, 1))

        key_masks = tf.sequence_mask(keys_length, hist_len)

        if self.weight_normalization:
            paddings = tf.ones_like(outputs) * (-2 ** 32 + 1)
        else:
            paddings = tf.zeros_like(outputs)

        outputs = tf.where(key_masks, outputs, paddings)

        if self.weight_normalization:
            outputs = tf.nn.softmax(outputs)

        outputs = tf.matmul(outputs, keys)

        return outputs
开发者ID:SundeepMehta,项目名称:DeepCTR,代码行数:25,代码来源:sequence.py


示例12: smoothing_crossentropy_avgall

def smoothing_crossentropy_avgall(logits, targets, sequence_length):
    """ Computes cross entropy loss of a batch of data with label smoothing.

    The final loss is averaged by the length of each
    sequence and then averaged by the batch size.

    Args:
        logits: The logits Tensor with shape [timesteps, batch_size, vocab_size].
        targets: The gold labels Tensor with shape [timesteps, batch_size].
        sequence_length: The length of `targets`, [batch_size, ]

    Returns: Loss sum and weight sum.
    """
    soft_targets, normalizing = label_smoothing(targets, logits.get_shape().as_list()[-1])
    losses = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=soft_targets) - normalizing
    # [timesteps, batch_size]
    loss_mask = tf.transpose(
        tf.sequence_mask(
            lengths=tf.to_int32(sequence_length),
            maxlen=tf.to_int32(tf.shape(targets)[0]),
            dtype=tf.float32), [1, 0])
    losses = losses * loss_mask
    # average loss
    avg_length = tf.to_float(sequence_length)
    loss_by_time = tf.reduce_sum(losses, axis=0) / avg_length
    loss_sum = tf.reduce_sum(loss_by_time)
    return loss_sum, tf.to_float(tf.shape(sequence_length)[0])
开发者ID:KIngpon,项目名称:NJUNMT-tf,代码行数:27,代码来源:loss_fns.py


示例13: create_variables_for_optimization

  def create_variables_for_optimization(self):
    with tf.name_scope("optimization"):
      with tf.name_scope("masker"):
          self.mask = tf.sequence_mask(self.seq_len, self.num_step)
          self.mask = tf.reshape(tf.cast(self.mask, tf.float32), (-1,))
      if self.loss_function == "cross_entropy":
        self.pl_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
                                            logits=self.logit,
                                            labels=self.actions_flatten)
      elif self.loss_function == "l2":
        self.one_hot_actions = tf.one_hot(self.actions_flatten, self.num_actions)
        self.pl_loss = tf.reduce_mean((self.probs - self.one_hot_actions) ** 2,
                                            axis=1)
      else:
          raise ValueError("loss function type is not defined")

      self.pl_loss = tf.multiply(self.pl_loss, self.mask)
      self.pl_loss = tf.reduce_mean(tf.multiply(self.pl_loss, self.returns_flatten))

      self.entropy = tf.multiply(self.entropy, self.mask)
      self.entropy = tf.reduce_mean(self.entropy)

      self.loss = self.pl_loss - self.entropy_bonus * self.entropy

      self.trainable_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="policy_network")
      self.gradients = self.optimizer.compute_gradients(self.loss, var_list=self.trainable_variables)
      self.clipped_gradients = [(tf.clip_by_norm(grad, self.max_gradient), var)
                                  for grad, var in self.gradients]
      self.train_op = self.optimizer.apply_gradients(self.clipped_gradients,
                                                     self.global_step)
      self.grad_norm = tf.global_norm([grad for grad, var in self.gradients])
      self.var_norm = tf.global_norm(self.trainable_variables)
开发者ID:csawtelle,项目名称:pg_rnn,代码行数:32,代码来源:pg_rnn.py


示例14: check_dtypes

 def check_dtypes(lengths_dtype, maxlen_dtype):
   res = tf.sequence_mask(tf.constant([1, 3, 2], dtype=lengths_dtype),
                          tf.constant(5, dtype=maxlen_dtype))
   self.assertAllEqual(res.get_shape(), [3, 5])
   self.assertAllEqual(res.eval(), [[True, False, False, False, False],
                                    [True, True, True, False, False],
                                    [True, True, False, False, False]])
开发者ID:BloodD,项目名称:tensorflow,代码行数:7,代码来源:array_ops_test.py


示例15: _compute_metrics

  def _compute_metrics(self, features, labels, predictions):
    length = self._get_features_length(features)
    weights = tf.sequence_mask(
        length, maxlen=tf.shape(labels["tags"])[1], dtype=tf.float32)

    eval_metric_ops = {}
    eval_metric_ops["accuracy"] = tf.metrics.accuracy(
        labels["tags"], predictions["tags"], weights=weights)

    if self.tagging_scheme in ("bioes",):
      flag_fn = None
      if self.tagging_scheme == "bioes":
        flag_fn = flag_bioes_tags

      gold_flags, predicted_flags = tf.py_func(
          flag_fn,
          [labels["tags"], predictions["tags"], length],
          [tf.bool, tf.bool],
          stateful=False)

      precision_metric = tf.metrics.precision(gold_flags, predicted_flags)
      recall_metric = tf.metrics.recall(gold_flags, predicted_flags)

      precision = precision_metric[0]
      recall = recall_metric[0]
      f1 = (2 * precision * recall) / (recall + precision)

      eval_metric_ops["precision"] = precision_metric
      eval_metric_ops["recall"] = recall_metric
      eval_metric_ops["f1"] = (f1, tf.no_op())

    return eval_metric_ops
开发者ID:yhgon,项目名称:OpenNMT-tf,代码行数:32,代码来源:sequence_tagger.py


示例16: mkMask

def mkMask(input_tensor, maxLen):
    shape_of_input = tf.shape(input_tensor)
    shape_of_output = tf.concat(axis=0, values=[shape_of_input, [maxLen]])

    oneDtensor = tf.reshape(input_tensor, shape=(-1,))
    flat_mask = tf.sequence_mask(oneDtensor, maxlen=maxLen)
    return tf.reshape(flat_mask, shape_of_output)
开发者ID:et0803,项目名称:nlpcc2017_news_headline_categorization,代码行数:7,代码来源:TfUtils.py


示例17: cross_entropy_sequence_loss

def cross_entropy_sequence_loss(logits,
                                labels,
                                sequence_length,
                                label_smoothing=0.0,
                                average_in_time=False,
                                mode=tf.estimator.ModeKeys.TRAIN):
  """Computes the cross entropy loss of sequences.

  Args:
    logits: The unscaled probabilities.
    labels: The true labels.
    sequence_length: The length of each sequence.
    label_smoothing: The label smoothing value.
    average_in_time: If ``True``, also average the loss in the time dimension.
    mode: A ``tf.estimator.ModeKeys`` mode.

  Returns:
    A tuple (cumulated loss, loss normalizer, token-level normalizer).
  """
  batch_size = tf.shape(logits)[0]
  max_time = tf.shape(logits)[1]

  cross_entropy = _softmax_cross_entropy(logits, labels, label_smoothing, mode)
  weights = tf.sequence_mask(
      sequence_length, maxlen=max_time, dtype=cross_entropy.dtype)
  loss = tf.reduce_sum(cross_entropy * weights)
  loss_token_normalizer = tf.reduce_sum(weights)

  if average_in_time or mode != tf.estimator.ModeKeys.TRAIN:
    loss_normalizer = loss_token_normalizer
  else:
    loss_normalizer = tf.cast(batch_size, loss.dtype)

  return loss, loss_normalizer, loss_token_normalizer
开发者ID:yhgon,项目名称:OpenNMT-tf,代码行数:34,代码来源:losses.py


示例18: attention

def attention(x, feature_dim, sequence_length, mask_zero=False, maxlen=None, epsilon=1e-8, seed=0):
    input_shape = tf.shape(x)
    step_dim = input_shape[1]
    # feature_dim = input_shape[2]
    x = tf.reshape(x, [-1, feature_dim])
    """
    The last dimension of the inputs to `Dense` should be defined. Found `None`.

    cann't not use `tf.layers.Dense` here
    eij = tf.layers.Dense(1)(x)

    see: https://github.com/tensorflow/tensorflow/issues/13348
    workaround: specify the feature_dim as input
    """

    eij = tf.layers.Dense(1, activation=tf.nn.tanh, kernel_initializer=tf.glorot_uniform_initializer(seed=seed),
                          dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x)
    eij = tf.reshape(eij, [-1, step_dim])
    a = tf.exp(eij)

    # apply mask after the exp. will be re-normalized next
    if mask_zero:
        # None * step_dim
        mask = tf.sequence_mask(sequence_length, maxlen)
        mask = tf.cast(mask, tf.float32)
        a = a * mask

    # in some cases especially in the early stages of training the sum may be almost zero
    a /= tf.cast(tf.reduce_sum(a, axis=1, keep_dims=True) + epsilon, tf.float32)

    a = tf.expand_dims(a, axis=-1)
    return a
开发者ID:jkhlot,项目名称:tensorflow-XNN,代码行数:32,代码来源:nn_module.py


示例19: make_positions

def make_positions(sequence_length, maximum_length=None):
  """Builds a sequence of positions.

  The first position is 1 as the 0 index is reserved to padding positions.

  Args:
    sequence_length: The length of each sequence as a ``tf.Tensor`` of shape
      :math:`[B]`.
    maximum_length: Optional size of the returned time dimension. Otherwise it
      is the maximum of :obj:`sequence_length`.

  Returns:
    The sequence of positions as a ``tf.Tensor`` of shape :math:`[B, T]`.
  """
  if maximum_length is None:
    maximum_length = tf.reduce_max(sequence_length)

  batch_size = tf.shape(sequence_length)[0]

  # Make 0 the position of padding.
  position = tf.range(maximum_length) + 1
  position = tf.tile(position, [batch_size])
  position = tf.reshape(position, [batch_size, -1])

  mask = tf.sequence_mask(
      sequence_length, maxlen=maximum_length, dtype=position.dtype)

  position = position * mask

  return position
开发者ID:yhgon,项目名称:OpenNMT-tf,代码行数:30,代码来源:position.py


示例20: _mask_by_length

def _mask_by_length(t, length):
  """Mask t, 3-D [batch, time, dim], by length, 1-D [batch,]."""
  maxlen = t.get_shape().as_list()[1]
  mask = tf.sequence_mask(length, maxlen=maxlen)
  mask = tf.expand_dims(tf.cast(mask, tf.float32), -1)
  # shape(mask) = (batch, num_timesteps, 1)
  return t * mask
开发者ID:Jmq14,项目名称:models,代码行数:7,代码来源:adversarial_losses.py



注:本文中的tensorflow.sequence_mask函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.set_random_seed函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.select函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap