• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.concat_v2函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.concat_v2函数的典型用法代码示例。如果您正苦于以下问题:Python concat_v2函数的具体用法?Python concat_v2怎么用?Python concat_v2使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了concat_v2函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: symmetric_feedforward_weights

def symmetric_feedforward_weights(weights):
	sizes = [weights[0].get_shape()[0].value]
	sizes += [ w.get_shape()[0].value for w in weights[1:] ]
	sizes += [weights[-1].get_shape()[1].value]

	res = []
	for pre_id, pre_size in enumerate(sizes):
		stack = []
		for post_id, post_size in enumerate(sizes):
			if pre_id == post_id - 1 and pre_id < len(weights):
				stack.append(weights[pre_id])
			elif post_id == pre_id -1 and post_id < len(weights):
				stack.append(tf.transpose(weights[post_id]))
			else:
				pre_zeros = tf.zeros((pre_size, post_size))
				stack.append(pre_zeros)
		
		res.append(tf.concat_v2(stack, 1))


	res = tf.concat_v2(res, 0)

	# for i in xrange(res_v.shape[0]):
	# 	for j in xrange(res_v.shape[1]):
	# 		assert res_v[i, j] == res_v[j, i]

	return res
开发者ID:alexeyche,项目名称:alexeyche-junk,代码行数:27,代码来源:hopfield_utils.py


示例2: testAttentionCellWrapperCorrectResult

 def testAttentionCellWrapperCorrectResult(self):
   num_units = 4
   attn_length = 6
   batch_size = 2
   expected_output = np.array(
       [[0.955392, 0.408507, -0.60122, 0.270718],
        [0.903681, 0.331165, -0.500238, 0.224052]],
       dtype=np.float32)
   expected_state = np.array(
       [[
           0.81331915, 0.32036272, 0.28079176, 1.08888793, 0.41264394,
           0.1062041, 0.10444493, 0.32050529, 0.64655536, 0.70794445,
           0.51896095, 0.31809306, 0.58086717, 0.49446869, 0.7641536,
           0.12814975, 0.92231739, 0.89857256, 0.21889746, 0.38442063,
           0.53481543, 0.8876909, 0.45823169, 0.5905602, 0.78038228,
           0.56501579, 0.03971386, 0.09870267, 0.8074435, 0.66821432,
           0.99211812, 0.12295902, 1.01412082, 0.33123279, -0.71114945,
           0.40583119
       ], [
           0.59962207, 0.42597458, -0.22491696, 0.98063421, 0.32548007,
           0.11623692, -0.10100613, 0.27708149, 0.76956916, 0.6360054,
           0.51719815, 0.50458527, 0.73000264, 0.66986895, 0.73576689,
           0.86301267, 0.87887371, 0.35185754, 0.93417215, 0.64732957,
           0.63173044, 0.66627824, 0.53644657, 0.20477486, 0.98458421,
           0.38277245, 0.03746676, 0.92510188, 0.57714164, 0.84932971,
           0.36127412, 0.12125921, 0.99780077, 0.31886846, -0.67595094,
           0.56531656
       ]],
       dtype=np.float32)
   seed = 12345
   tf.set_random_seed(seed)
   for state_is_tuple in [False, True]:
     with tf.Session() as sess:
       with tf.variable_scope("state_is_tuple", reuse=state_is_tuple):
         lstm_cell = tf.contrib.rnn.BasicLSTMCell(
             num_units, state_is_tuple=state_is_tuple)
         cell = tf.contrib.rnn.AttentionCellWrapper(
             lstm_cell, attn_length, state_is_tuple=state_is_tuple)
         zeros1 = tf.random_uniform(
             (batch_size, num_units), 0.0, 1.0, seed=seed + 1)
         zeros2 = tf.random_uniform(
             (batch_size, num_units), 0.0, 1.0, seed=seed + 2)
         zeros3 = tf.random_uniform(
             (batch_size, num_units), 0.0, 1.0, seed=seed + 3)
         attn_state_zeros = tf.random_uniform(
             (batch_size, attn_length * num_units), 0.0, 1.0, seed=seed + 4)
         zero_state = ((zeros1, zeros2), zeros3, attn_state_zeros)
         if not state_is_tuple:
           zero_state = tf.concat_v2([
               zero_state[0][0], zero_state[0][1], zero_state[1], zero_state[2]
           ], 1)
         inputs = tf.random_uniform(
             (batch_size, num_units), 0.0, 1.0, seed=seed + 5)
         output, state = cell(inputs, zero_state)
         if state_is_tuple:
           state = tf.concat_v2([state[0][0], state[0][1], state[1], state[2]],
                                1)
         sess.run(tf.global_variables_initializer())
         self.assertAllClose(sess.run(output), expected_output)
         self.assertAllClose(sess.run(state), expected_state)
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:60,代码来源:rnn_cell_test.py


示例3: _testConfMatrixOnTensors

  def _testConfMatrixOnTensors(self, tf_dtype, np_dtype):
    with self.test_session() as sess:
      m_neg = tf.placeholder(dtype=tf.float32)
      m_pos = tf.placeholder(dtype=tf.float32)
      s = tf.placeholder(dtype=tf.float32)

      neg = tf.random_normal([20], mean=m_neg, stddev=s, dtype=tf.float32)
      pos = tf.random_normal([20], mean=m_pos, stddev=s, dtype=tf.float32)

      data = tf.concat_v2([neg, pos], 0)
      data = tf.cast(tf.round(data), tf_dtype)
      data = tf.minimum(tf.maximum(data, 0), 1)
      lab = tf.concat_v2(
          [tf.zeros(
              [20], dtype=tf_dtype), tf.ones(
                  [20], dtype=tf_dtype)], 0)

      cm = tf.confusion_matrix(
          lab, data, dtype=tf_dtype, num_classes=2)

      d, l, cm_out = sess.run([data, lab, cm], {m_neg: 0.0,
                                                m_pos: 1.0,
                                                s: 1.0})

      truth = np.zeros([2, 2], dtype=np_dtype)
      try:
        range_builder = xrange
      except NameError:  # In Python 3.
        range_builder = range
      for i in range_builder(len(d)):
        truth[d[i], l[i]] += 1

      self.assertEqual(cm_out.dtype, np_dtype)
      self.assertAllClose(cm_out, truth, atol=1e-10)
开发者ID:BloodD,项目名称:tensorflow,代码行数:34,代码来源:confusion_matrix_test.py


示例4: _define_distance_to_clusters

  def _define_distance_to_clusters(self, data):
    """Defines the Mahalanobis distance to the assigned Gaussian."""
    # TODO(xavigonzalvo): reuse (input - mean) * cov^-1 * (input -
    # mean) from log probability function.
    self._all_scores = []
    for shard in data:
      all_scores = []
      shard = tf.expand_dims(shard, 0)
      for c in xrange(self._num_classes):
        if self._covariance_type == FULL_COVARIANCE:
          cov = self._covs[c, :, :]
        elif self._covariance_type == DIAG_COVARIANCE:
          cov = tf.diag(self._covs[c, :])
        inverse = tf.matrix_inverse(cov + self._min_var)
        inv_cov = tf.tile(
            tf.expand_dims(inverse, 0), tf.stack([self._num_examples, 1, 1]))
        diff = tf.transpose(shard - self._means[c, :, :], perm=[1, 0, 2])
        m_left = tf.matmul(diff, inv_cov)
        all_scores.append(
            tf.sqrt(tf.matmul(
                m_left, tf.transpose(
                    diff, perm=[0, 2, 1]))))
      self._all_scores.append(
          tf.reshape(
              tf.concat_v2(all_scores, 1),
              tf.stack([self._num_examples, self._num_classes])))

    # Distance to the associated class.
    self._all_scores = tf.concat_v2(self._all_scores, 0)
    assignments = tf.concat_v2(self.assignments(), 0)
    rows = tf.to_int64(tf.range(0, self._num_examples))
    indices = tf.concat_v2(
        [tf.expand_dims(rows, 1), tf.expand_dims(assignments, 1)], 1)
    self._scores = tf.gather_nd(self._all_scores, indices)
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:34,代码来源:gmm_ops.py


示例5: __call__

    def __call__(self, input_tuple, state, scope=None):
        with vs.variable_scope(scope or type(self).__name__):
            self._init_parameters()

            _input, target, dInput_dF = input_tuple
            
            u, s, r, inner_spikes, dW, dF, reward, reward_mean = state
            
            s = (1.0 - tau_syn) * s + tf.concat_v2([_input, inner_spikes], 1)
            u = (1.0 - tau_mem) * u + mo.matmul(s, self.W)
            r = (1.0 - tau_refr) * r
            

            act_raw = self._activation(u)
            act = act_raw * tf.exp(-r)
            
            spikes = tf.where(
                act > tf.random_uniform([batch_size, self._num_units]),
                tf.ones([batch_size, self._num_units]),
                tf.zeros([batch_size, self._num_units])
            )   
            
            hidden_spikes, _ = self.slice(spikes)
            _, act_visible = self.slice(act)
            
            
            reward_mean = (1.0 - tau_long) * reward_mean + tau_long * reward
            reward = (1.0 - tau_learn) * reward + tau_learn * tf.reduce_sum(
                target * safe_log(act_visible*dt) + (1.0 - target) * safe_log(1.0 - act_visible*dt)
            , 1)
            
            r += spikes * amp_refr

            act_grad = tf.gradients([act], [u])[0]
            
            learn_target = tf.concat_v2([hidden_spikes, target], 1)

            factor = tf.concat_v2([
                (reward - reward_mean) * tf.ones((batch_size, hidden_size,)), 
                tf.ones((batch_size, visible_size,))
            ], 1)
            
            neuron_derivative = tf.reduce_sum( (act_grad/act_raw) * (learn_target - act) * factor, 0)
            

            Wsliced = tf.slice(self.W, [0, 0], [self._filters_num, self._num_units])
            
            dF_deriv_part = tf.squeeze(mo.matmul(Wsliced, tf.expand_dims(neuron_derivative, 1)))
            
            
            dW += lrate * outer(
                tf.reduce_sum(s, 0),
                neuron_derivative
            )
            
            dInput_dF = tf.reduce_mean(dInput_dF, 0)
            
            dF += lrate * dF_deriv_part * dInput_dF
            
            return GLMOutputTuple(spikes, act, factor, reward, reward_mean), GLMStateTuple(u, s, r, spikes, dW, dF, reward, reward_mean)
开发者ID:alexeyche,项目名称:alexeyche-junk,代码行数:60,代码来源:tf_002.py


示例6: boston_eval_fn

def boston_eval_fn():
  boston = tf.contrib.learn.datasets.load_boston()
  n_examples = len(boston.target)
  features = tf.reshape(
      tf.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM])
  labels = tf.reshape(tf.constant(boston.target), [n_examples, 1])
  return tf.concat_v2([features, features], 0), tf.concat_v2([labels, labels],
                                                             0)
开发者ID:tensorflow,项目名称:tensorflow,代码行数:8,代码来源:estimator_test.py


示例7: refresh_shortlist

 def refresh_shortlist():
     """Update the shortlist with the highest scores in id_to_score."""
     new_scores, new_ids = tf.nn.top_k(self.id_to_score, self.shortlist_size)
     smallest_new_score = tf.reduce_min(new_scores)
     new_length = tf.reduce_sum(tf.to_int32(tf.greater(new_scores, tf.float32.min)))
     u1 = self.sl_ids.assign(tf.to_int64(tf.concat_v2([[new_length], new_ids], 0)))
     u2 = self.sl_scores.assign(tf.concat_v2([[smallest_new_score], new_scores], 0))
     self.last_ops = [u1, u2]
     return tf.group(u1, u2)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:9,代码来源:topn.py


示例8: build_model

  def build_model(self):
    sc = predictron_arg_scope()
    with tf.variable_scope('state'):
      with slim.arg_scope(sc):
        state = slim.conv2d(self.inputs, 32, [3, 3], scope='conv1')
        state = layers.batch_norm(state, activation_fn=tf.nn.relu, scope='conv1/preact')
        state = slim.conv2d(state, 32, [3, 3], scope='conv2')
        state = layers.batch_norm(state, activation_fn=tf.nn.relu, scope='conv2/preact')

    iter_template = tf.make_template('iter', self.iter_func, unique_name_='iter')

    rewards_arr = []
    gammas_arr = []
    lambdas_arr = []
    values_arr = []

    for k in range(self.max_depth):
      state, reward, gamma, lambda_, value = iter_template(state)
      rewards_arr.append(reward)
      gammas_arr.append(gamma)
      lambdas_arr.append(lambda_)
      values_arr.append(value)

    _, _, _, _, value = iter_template(state)
    # K + 1 elements
    values_arr.append(value)

    bs = tf.shape(self.inputs)[0]
    # [batch_size, K * maze_size]
    self.rewards = tf.pack(rewards_arr, axis=1)
    # [batch_size, K, maze_size]
    self.rewards = tf.reshape(self.rewards, [bs, self.max_depth, self.maze_size])
    # [batch_size, K + 1, maze_size]
    self.rewards = tf.concat_v2(values=[tf.zeros(shape=[bs, 1, self.maze_size], dtype=tf.float32), self.rewards],
                                axis=1, name='rewards')

    # [batch_size, K * maze_size]
    self.gammas = tf.pack(gammas_arr, axis=1)
    # [batch_size, K, maze_size]
    self.gammas = tf.reshape(self.gammas, [bs, self.max_depth, self.maze_size])
    # [batch_size, K + 1, maze_size]
    self.gammas = tf.concat_v2(values=[tf.ones(shape=[bs, 1, self.maze_size], dtype=tf.float32), self.gammas],
                               axis=1, name='gammas')

    # [batch_size, K * maze_size]
    self.lambdas = tf.pack(lambdas_arr, axis=1)
    # [batch_size, K, maze_size]
    self.lambdas = tf.reshape(self.lambdas, [-1, self.max_depth, self.maze_size])

    # [batch_size, (K + 1) * maze_size]
    self.values = tf.pack(values_arr, axis=1)
    # [batch_size, K + 1, maze_size]
    self.values = tf.reshape(self.values, [-1, (self.max_depth + 1), self.maze_size])

    self.build_preturns()
    self.build_lambda_preturns()
开发者ID:b-kartal,项目名称:predictron,代码行数:56,代码来源:predictron.py


示例9: testConcat

  def testConcat(self):
    tf_val = tf.concat_v2([[16, 37], tf.placeholder(tf.int32, shape=(2,))], 0)
    c_val = tensor_util.constant_value_as_shape(tf_val)
    self.assertEqual([16, 37, None, None], c_val.as_list())

    tf_val = tf.concat_v2(
        [[16, 37], tf.placeholder(
            tf.int32, shape=(1,)), [48]], 0)
    c_val = tensor_util.constant_value_as_shape(tf_val)
    self.assertEqual([16, 37, None, 48], c_val.as_list())
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:10,代码来源:tensor_util_test.py


示例10: update_tensor

def update_tensor(V, dim2, val):  # Update tensor V, with index(:,dim2[:]) by val[:]
    print 'Shapes Recieved in Update: V, dim, val are ==> ',V.get_shape().as_list(), dim2.get_shape().as_list(), val.get_shape().as_list()
    val = tf.cast(val, V.dtype)

    def body(_, (v, d2, chg)):
        print 'Shapes Recieved in Body of Update: v, d2, chg are ==> ', v.get_shape().as_list(), d2.get_shape().as_list(), chg.get_shape().as_list()
        d2_int = tf.cast(d2, tf.int32)
        if len(chg.get_shape().as_list()) == 0:
            chg = [chg]
        else:
            chg = tf.reshape(chg, shape=[1]+chg.get_shape().as_list())
        oob = lambda : tf.slice(tf.concat_v2([v[:d2_int], chg], axis=0), tf.range(0,len(v.get_shape().as_list())), v.get_shape().as_list())
        inb = lambda : tf.slice(tf.concat_v2([v[:d2_int], chg, v[d2_int + 1:]], axis=0), tf.constant(0,shape=[len(v.get_shape().as_list())]), v.get_shape().as_list())
        return tf.cond(tf.less(d2_int + 1, v.get_shape().as_list()[0]), inb, oob)
开发者ID:zhaoxin111,项目名称:How-to-Learn-from-Little-Data,代码行数:14,代码来源:tf_utils.py


示例11: unzip

def unzip(x, split_dim, current_length, num_splits=2, name=None):
    """Splits a tensor by unzipping along the split_dim.

  For example the following array split into 2 would be:
      [1, 2, 3, 4, 5, 6] -> [1, 3, 5], [2, 4, 6]
  and by 3:
      [1, 2, 3, 4] -> [1, 4], [2], [3]

  Args:
    x: The tensor to split.
    split_dim: The dimension to split along.
    current_length: Current length along the split_dim.
    num_splits: The number of splits.
    name: Optional name for this op.
  Returns:
    A length num_splits sequence.
  """
    with tf.name_scope(name, "unzip", [x]) as scope:
        x = tf.convert_to_tensor(x, name="x")
        # There is probably a more efficient way to do this.
        all_splits = tf.split(value=x, num_or_size_splits=current_length, axis=split_dim, name=scope)
        splits = [[] for _ in xrange(num_splits)]
        for i in xrange(current_length):
            splits[i % num_splits].append(all_splits[i])
        return [tf.concat_v2(s, split_dim) for s in splits]
开发者ID:google,项目名称:prettytensor,代码行数:25,代码来源:functions.py


示例12: testDynamicAttentionDecoderStateIsTuple

    def testDynamicAttentionDecoderStateIsTuple(self):
      with self.test_session() as sess:
        with tf.variable_scope("root",
                               initializer=tf.constant_initializer(0.5)):
          cell = tf.contrib.rnn.BasicLSTMCell(2, state_is_tuple=True)
          cell = tf.contrib.rnn.MultiRNNCell(cells=[cell] * 2,
                                             state_is_tuple=True)
          inp = tf.constant(0.5, shape=[2, 2, 2])
          enc_outputs, enc_state = tf.contrib.rnn.static_rnn(
              cell, inp, dtype=tf.float32)
          attn_states = tf.concat_v2(
              [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs],
              1)
          dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
          dec, mem = tf.contrib.legacy_seq2seq.attention_decoder(
              dec_inp, enc_state,
              attn_states, cell, output_size=4)
          sess.run([tf.global_variables_initializer()])
          res = sess.run(dec)
          self.assertEqual(3, len(res))
          self.assertEqual((2, 4), res[0].shape)

          res = sess.run([mem])
          self.assertEqual(2, len(res[0]))
          self.assertEqual((2, 2), res[0][0].c.shape)
          self.assertEqual((2, 2), res[0][0].h.shape)
          self.assertEqual((2, 2), res[0][1].c.shape)
          self.assertEqual((2, 2), res[0][1].h.shape)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:28,代码来源:seq2seq_test.py


示例13: average_gradients

def average_gradients(tower_grads):
  """Calculate the average gradient for each shared variable across all towers.
  Note that this function provides a synchronization point across all towers.
  Args:
    tower_grads: List of lists of (gradient, variable) tuples. The outer list
      is over individual gradients. The inner list is over the gradient
      calculation for each tower.
  Returns:
     List of pairs of (gradient, variable) where the gradient has been averaged
     across all towers.
  """
  average_grads = []
  for grad_and_vars in zip(*tower_grads):
    # Note that each grad_and_vars looks like the following:
    #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
    grads = []
    for g, _ in grad_and_vars:
      # Add 0 dimension to the gradients to represent the tower.
      expanded_g = tf.expand_dims(g, 0)

      # Append on a 'tower' dimension which we will average over below.
      grads.append(expanded_g)

    # Average over the 'tower' dimension.
    grad = tf.concat_v2(grads, 0)
    grad = tf.reduce_mean(grad, 0)

    # Keep in mind that the Variables are redundant because they are shared
    # across towers. So .. we will just return the first tower's pointer to
    # the Variable.
    v = grad_and_vars[0][1]
    grad_and_var = (grad, v)
    average_grads.append(grad_and_var)
  return average_grads
开发者ID:b-kartal,项目名称:predictron,代码行数:34,代码来源:train_multigpu.py


示例14: testRandomInitUnevenPartitions

 def testRandomInitUnevenPartitions(self):
     with self.test_session():
         rnd = tf.Variable(tf.random_uniform([20, 43], dtype=tf.float64))
         var_lists = [
             tf.create_partitioned_variables(rnd.get_shape(), [1, i], rnd.initialized_value()) for i in xrange(1, 10)
         ]
         tf.global_variables_initializer().run()
         rnd_val = rnd.eval()
         # Only check the slice save specs for the first 5 tf.
         save_specs = [
             # One slice
             ["20 43 0,20:0,43"],
             # Two slices
             ["20 43 0,20:0,22", "20 43 0,20:22,21"],
             # Three slices
             ["20 43 0,20:0,15", "20 43 0,20:15,14", "20 43 0,20:29,14"],
             # Four slices
             ["20 43 0,20:0,11", "20 43 0,20:11,11", "20 43 0,20:22,11", "20 43 0,20:33,10"],
             # Five slices
             ["20 43 0,20:0,9", "20 43 0,20:9,9", "20 43 0,20:18,9", "20 43 0,20:27,8", "20 43 0,20:35,8"],
         ]
         for i, vs in enumerate(var_lists):
             var_val = tf.concat_v2(vs, 1).eval()
             self.assertAllClose(rnd_val, var_val)
             self.assertEqual([tf.float64] * len(vs), [v.dtype.base_dtype for v in vs])
             if i < len(save_specs):
                 self._TestSaveSpec(vs, save_specs[i])
开发者ID:BloodD,项目名称:tensorflow,代码行数:27,代码来源:partitioned_variables_test.py


示例15: concat

def concat(input_layer, concat_dim, other_tensors=None):
    """Concatenates input PrettyTensor with other_tensors along the specified dim.

  This adds the Pretty Tensor passed via input_layer to the front of the list of
  tensors to concat.

  Args:
    input_layer: The input layer.
    concat_dim: The dimension along which to concat.
    other_tensors: The tensors to concatenate with as an iterable or None if
      this is called on a sequence.
  Returns:
    A new PrettyTensor.
  Raises:
    ValueError: If other_tensors is None and this is not a sequence.
  """
    if input_layer.is_sequence():
        all_tensors = input_layer.sequence
        all_tensors.extend(other_tensors or [])
    else:
        all_tensors = [input_layer]
        if other_tensors is None:
            raise ValueError("Other Tensors must be supplied.")
        all_tensors.extend(other_tensors)
    # Edge cases really only apply when this is a sequence with 0 or 1 element.
    if not all_tensors:
        return prettytensor.wrap_sequence([])
    else:
        return tf.concat_v2(all_tensors, concat_dim)
开发者ID:google,项目名称:prettytensor,代码行数:29,代码来源:pretty_tensor_methods.py


示例16: one_hot_mask

def one_hot_mask(labels, num_classes, scope=None):
  """Compute 1-hot encodings for masks.

  Given a label image, this computes the one hot encoding at
  each pixel.

  Args:
    labels: (batch_size, width, height, 1) tensor containing labels.
    num_classes: number of classes
    scope: optional scope name

  Returns:
    Tensor of shape (batch_size, width, height, num_classes) with
    a 1-hot encoding.
  """
  with tf.name_scope(scope, "OneHotMask", [labels]):
    height, width, depth = _shape(labels)
    assert depth == 1
    sparse_labels = tf.to_int32(tf.reshape(labels, [-1, 1]))
    sparse_size, _ = _shape(sparse_labels)
    indices = tf.reshape(tf.range(0, sparse_size, 1), [-1, 1])
    concated = tf.concat_v2([indices, sparse_labels], 1)
    dense_result = tf.sparse_to_dense(concated, [sparse_size, num_classes], 1.0,
                                      0.0)
    result = tf.reshape(dense_result, [height, width, num_classes])
    return result
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:26,代码来源:misc.py


示例17: test_broadcast_apply_and_solve

  def test_broadcast_apply_and_solve(self):
    # These cannot be done in the automated (base test class) tests since they
    # test shapes that tf.matmul cannot handle.
    # In particular, tf.matmul does not broadcast.
    with self.test_session() as sess:
      x = tf.random_normal(shape=(2, 2, 3, 4))

      # This LinearOperatorDiag will be brodacast to (2, 2, 3, 3) during solve
      # and apply with 'x' as the argument.
      diag = tf.random_uniform(shape=(2, 1, 3))
      operator = linalg.LinearOperatorDiag(diag, is_self_adjoint=True)
      self.assertAllEqual((2, 1, 3, 3), operator.shape)

      # Create a batch matrix with the broadcast shape of operator.
      diag_broadcast = tf.concat_v2((diag, diag), 1)
      mat = tf.matrix_diag(diag_broadcast)
      self.assertAllEqual((2, 2, 3, 3), mat.get_shape())  # being pedantic.

      operator_apply = operator.apply(x)
      mat_apply = tf.matmul(mat, x)
      self.assertAllEqual(operator_apply.get_shape(), mat_apply.get_shape())
      self.assertAllClose(*sess.run([operator_apply, mat_apply]))

      operator_solve = operator.solve(x)
      mat_solve = tf.matrix_solve(mat, x)
      self.assertAllEqual(operator_solve.get_shape(), mat_solve.get_shape())
      self.assertAllClose(*sess.run([operator_solve, mat_solve]))
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:27,代码来源:linear_operator_diag_test.py


示例18: horizontal_lstm

def horizontal_lstm(images, num_filters_out, scope=None):
  """Run an LSTM bidirectionally over all the rows of each image.

  Args:
    images: (num_images, height, width, depth) tensor
    num_filters_out: output depth
    scope: optional scope name

  Returns:
    (num_images, height, width, num_filters_out) tensor, where
    num_steps is width and new num_batches is num_image_batches * height
  """
  with tf.variable_scope(scope, "HorizontalLstm", [images]):
    batch_size, _, _, _ = _shape(images)
    sequence = images_to_sequence(images)
    with tf.variable_scope("lr"):
      hidden_sequence_lr = lstm1d.ndlstm_base(sequence, num_filters_out // 2)
    with tf.variable_scope("rl"):
      hidden_sequence_rl = (
          lstm1d.ndlstm_base(sequence,
                             num_filters_out - num_filters_out // 2,
                             reverse=1))
    output_sequence = tf.concat_v2([hidden_sequence_lr, hidden_sequence_rl], 2)
    output = sequence_to_images(output_sequence, batch_size)
    return output
开发者ID:curtiszimmerman,项目名称:tensorflow,代码行数:25,代码来源:lstm2d.py


示例19: LSTMCell

 def LSTMCell(cls, x, mprev, cprev, weights):
   xm = tf.concat_v2([x, mprev], 1)
   i_i, i_g, f_g, o_g = tf.split(
       value=tf.matmul(xm, weights), num_or_size_splits=4, axis=1)
   new_c = tf.sigmoid(f_g) * cprev + tf.sigmoid(i_g) * tf.tanh(i_i)
   new_c = tf.clip_by_value(new_c, -50.0, 50.0)
   new_m = tf.sigmoid(o_g) * tf.tanh(new_c)
   return new_m, new_c
开发者ID:BloodD,项目名称:tensorflow,代码行数:8,代码来源:function_test.py


示例20: _inference

    def _inference(self, docs, queries):
        """
        Computes document attentions given a document batch and query batch.
        """
        with tf.name_scope("inference"):
            # Compute document lengths / query lengths for batch
            doc_lens = length(docs)
            query_lens = length(queries)
            batch_size = tf.shape(docs)[0]

            with tf.variable_scope('encode'):
                # Encode Document / Query
                with tf.variable_scope('docs'), tf.device('/gpu:0'):
                    encoded_docs = tf.nn.dropout(self._embed(docs), self._keep_prob)
                    encoded_docs = self._bidirectional_encode(encoded_docs, doc_lens, self._encode_size)
                with tf.variable_scope('queries'), tf.device('/gpu:1'):
                    encoded_queries = tf.nn.dropout(self._embed(queries), self._keep_prob)
                    encoded_queries = self._bidirectional_encode(encoded_queries, query_lens, self._encode_size)

            with tf.variable_scope('attend') as scope:
                infer_gru = tf.nn.rnn_cell.GRUCell(self._infer_size)
                infer_state = infer_gru.zero_state(batch_size, tf.float32)
                for iter_step in range(self._num_glimpses):
                    if iter_step > 0:
                        scope.reuse_variables()

                    # Glimpse query and document
                    with tf.device('/gpu:0'):
                        q_attention, q_glimpse = self._glimpse(self._A_q, self._a_q, encoded_queries, infer_state)
                        tf.add_to_collection('query_attentions', q_attention)
                    with tf.device('/gpu:1'):
                        d_attention, d_glimpse = self._glimpse(self._A_d, self._a_d, encoded_docs, tf.concat_v2([infer_state, q_glimpse], 1))
                        tf.add_to_collection('doc_attentions', d_attention)
                    # Search Gates

                    gate_concat = tf.concat_v2([infer_state, q_glimpse, d_glimpse, q_glimpse * d_glimpse], 1)

                    r_d = tf.sigmoid(tf.matmul(gate_concat, self._g_d))
                    r_d = tf.nn.dropout(r_d, self._keep_prob)
                    r_q = tf.sigmoid(tf.matmul(gate_concat, self._g_q))
                    r_q = tf.nn.dropout(r_q, self._keep_prob)

                    combined_gated_glimpse = tf.concat_v2([r_q * q_glimpse, r_d * d_glimpse], 1)
                    _, infer_state = infer_gru(combined_gated_glimpse, infer_state)

            return tf.to_float(tf.sign(tf.abs(docs))) * d_attention
开发者ID:MrCrumpets,项目名称:alternating-reader-tf,代码行数:46,代码来源:AlternatingAttention.py



注:本文中的tensorflow.concat_v2函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.cond函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.concat函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap