• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.concat函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.concat函数的典型用法代码示例。如果您正苦于以下问题:Python concat函数的具体用法?Python concat怎么用?Python concat使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了concat函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _construct

    def _construct(self):
        """
        Construct the model; main part of it goes here
        """
        # our query = m_u + e_i
        query = (self._cur_user, self._cur_item)
        neg_query = (self._cur_user, self._cur_item_negative)

        # Positive
        neighbor = self._mem_layer(query,
                                   self.user_memory(self.input_neighborhoods),
                                   self.user_output(self.input_neighborhoods),
                                   self.input_neighborhood_lengths,
                                   self.config.max_neighbors)[-1].output
        self.score = self._output_module(tf.concat([self._cur_user * self._cur_item,
                                                    neighbor], axis=1))

        # Negative
        neighbor_negative = self._mem_layer(neg_query,
                                            self.user_memory(self.input_neighborhoods_negative),
                                            self.user_output(self.input_neighborhoods_negative),
                                            self.input_neighborhood_lengths_negative,
                                            self.config.max_neighbors)[-1].output
        negative_output = self._output_module(tf.concat(
            [self._cur_user * self._cur_item_negative, neighbor_negative], axis=1))

        # Loss and Optimizer
        self.loss = LossLayer()(self.score, negative_output)
        self._optimizer = OptimizerLayer(self.config.optimizer, clip=self.config.grad_clip,
                                         params=self.config.optimizer_params)
        self.train = self._optimizer(self.loss)

        tf.add_to_collection(GraphKeys.PREDICTION, self.score)
开发者ID:dotrado,项目名称:CollaborativeMemoryNetwork,代码行数:33,代码来源:cmn.py


示例2: mmd_objective

def mmd_objective(z, s, sdim):
    """
    Compute the MMD from latent space and nuisance_id

    Notes:
    Reimplementation in tensorflow of the Variational Fair Autoencoder
    https://arxiv.org/abs/1511.00830
    """
    
    #mmd_method = mmd_rbf
    mmd_method = mmd_fourier
    
    z_dim = z.get_shape().as_list()[1]

    # STEP 1: construct lists of samples in their proper batches
    z_part = tf.dynamic_partition(z, s, sdim)

                
    # STEP 2: add noise to all of them and get the mmd
    mmd = 0
    for j, z_j in enumerate(z_part):
        z0_ = z_j
        aux_z0 = tf.random_normal([1, z_dim])  # if an S category does not have any samples
        z0 = tf.concat([z0_, aux_z0], 0)
        if len(z_part) == 2:
            z1_ = z_part[j + 1]
            aux_z1 = tf.random_normal((1, z_dim))
            z1 = tf.concat([z1_, aux_z1], axis=0)
            return mmd_method(z0, z1)
        z1 = z
        mmd += mmd_method(z0, z1)
    return mmd
开发者ID:ssehztirom,项目名称:scVI-reproducibility,代码行数:32,代码来源:scVI.py


示例3: encode_coordinates_alt

  def encode_coordinates_alt(self, net):
    """An alternative implemenation for the encoding coordinates.

    Args:
      net: a tensor of shape=[batch_size, height, width, num_features]

    Returns:
      a list of tensors with encoded image coordinates in them.
    """
    batch_size, h, w, _ = net.shape.as_list()
    h_loc = [
      tf.tile(
          tf.reshape(
              tf.contrib.layers.one_hot_encoding(
                  tf.constant([i]), num_classes=h), [h, 1]), [1, w])
      for i in xrange(h)
    ]
    h_loc = tf.concat([tf.expand_dims(t, 2) for t in h_loc], 2)
    w_loc = [
      tf.tile(
          tf.contrib.layers.one_hot_encoding(tf.constant([i]), num_classes=w),
          [h, 1]) for i in xrange(w)
    ]
    w_loc = tf.concat([tf.expand_dims(t, 2) for t in w_loc], 2)
    loc = tf.concat([h_loc, w_loc], 2)
    loc = tf.tile(tf.expand_dims(loc, 0), [batch_size, 1, 1, 1])
    return tf.concat([net, loc], 3)
开发者ID:banjocui,项目名称:models,代码行数:27,代码来源:model_test.py


示例4: testDiscretizedMixLogisticLoss

  def testDiscretizedMixLogisticLoss(self):
    batch = 2
    height = 4
    width = 4
    channels = 3
    num_mixtures = 5
    logits = tf.concat(  # assign all probability mass to first component
        [tf.ones([batch, height, width, 1]) * 1e8,
         tf.zeros([batch, height, width, num_mixtures - 1])],
        axis=-1)
    locs = tf.random_uniform([batch, height, width, num_mixtures * 3],
                             minval=-.9, maxval=.9)
    log_scales = tf.random_uniform([batch, height, width, num_mixtures * 3],
                                   minval=-1., maxval=1.)
    coeffs = tf.atanh(tf.zeros([batch, height, width, num_mixtures * 3]))
    pred = tf.concat([logits, locs, log_scales, coeffs], axis=-1)

    # Test labels that don't satisfy edge cases where 8-bit value is 0 or 255.
    labels = tf.random_uniform([batch, height, width, channels],
                               minval=-.9, maxval=.9)
    locs_0 = locs[..., :3]
    log_scales_0 = log_scales[..., :3]
    centered_labels = labels - locs_0
    inv_stdv = tf.exp(-log_scales_0)
    plus_in = inv_stdv * (centered_labels + 1. / 255.)
    min_in = inv_stdv * (centered_labels - 1. / 255.)
    cdf_plus = tf.nn.sigmoid(plus_in)
    cdf_min = tf.nn.sigmoid(min_in)
    expected_loss = -tf.reduce_sum(tf.log(cdf_plus - cdf_min), axis=-1)

    actual_loss = common_layers.discretized_mix_logistic_loss(
        pred=pred, labels=labels)
    actual_loss_val, expected_loss_val = self.evaluate(
        [actual_loss, expected_loss])
    self.assertAllClose(actual_loss_val, expected_loss_val, rtol=1e-5)
开发者ID:qixiuai,项目名称:tensor2tensor,代码行数:35,代码来源:common_layers_test.py


示例5: get_idx_map

def get_idx_map(shape):
    """Get index map for a image.
    Args:
        shape: [B, T, H, W] or [B, H, W]
    Returns:
        idx: [B, T, H, W, 2], or [B, H, W, 2]
    """
    s = shape
    ndims = tf.shape(s)
    wdim = ndims - 1
    hdim = ndims - 2
    idx_shape = tf.concat(0, [s, tf.constant([1])])
    ones_h = tf.ones(hdim - 1, dtype='int32')
    ones_w = tf.ones(wdim - 1, dtype='int32')
    h_shape = tf.concat(0, [ones_h, tf.constant([-1]), tf.constant([1, 1])])
    w_shape = tf.concat(0, [ones_w, tf.constant([-1]), tf.constant([1])])

    idx_y = tf.zeros(idx_shape, dtype='float')
    idx_x = tf.zeros(idx_shape, dtype='float')

    h = tf.slice(s, ndims - 2, [1])
    w = tf.slice(s, ndims - 1, [1])
    idx_y += tf.reshape(tf.to_float(tf.range(h[0])), h_shape)
    idx_x += tf.reshape(tf.to_float(tf.range(w[0])), w_shape)
    idx = tf.concat(ndims[0], [idx_y, idx_x])

    return idx
开发者ID:renmengye,项目名称:deep-tracker,代码行数:27,代码来源:build_deep_tracker.py


示例6: __init__

    def __init__(self, session, input_pipeline):
        self.session = session
        self.input_pipeline = input_pipeline

        text_embeddings = weight_init(config.words_count + 2, config.hidden_count)

        embedded = tf.split(1, config.max_len, tf.nn.embedding_lookup(text_embeddings, input_pipeline.text_input))
        inputs = [tf.squeeze(input_, [1]) for input_ in embedded]

        w_image = weight_init(config.image_features_count, config.hidden_count)
        b_image = bias_init([config.hidden_count])

        image_transform = tf.matmul(input_pipeline.image_input, w_image) + b_image
        hidden_start = tf.concat(1, [tf.zeros_like(image_transform), image_transform])

        cell = WordCell(config.hidden_count, config.output_words_count + 1)
        probs_list, self.hidden = rnn.rnn(
            cell=cell,
            inputs=inputs,
            initial_state=hidden_start,
            sequence_length=input_pipeline.lens_input)
        self.probs = tf.concat(1, [tf.expand_dims(prob, 1) for prob in probs_list])

        float_lens = tf.cast(input_pipeline.lens_input, 'float')
        sample_losses = tf.reduce_sum(self.probs * input_pipeline.result_input, [1, 2]) / float_lens
        self.loss = -tf.reduce_mean(sample_losses)
        self.train_task = tf.train.AdamOptimizer(1e-4).minimize(self.loss)
        self.loss_summary = tf.scalar_summary('loss', self.loss)

        self.saver = tf.train.Saver()
开发者ID:koosyong,项目名称:tensortalk,代码行数:30,代码来源:network.py


示例7: _define_distance_to_clusters

  def _define_distance_to_clusters(self, data):
    """Defines the Mahalanobis distance to the assigned Gaussian."""
    # TODO(xavigonzalvo): reuse (input - mean) * cov^-1 * (input -
    # mean) from log probability function.
    self._all_scores = []
    for shard in data:
      all_scores = []
      shard = tf.expand_dims(shard, 0)
      for c in xrange(self._num_classes):
        if self._covariance_type == FULL_COVARIANCE:
          cov = self._covs[c, :, :]
        elif self._covariance_type == DIAG_COVARIANCE:
          cov = tf.diag(self._covs[c, :])
        inverse = tf.matrix_inverse(cov + self._min_var)
        inv_cov = tf.tile(
            tf.expand_dims(inverse, 0),
            tf.pack([self._num_examples, 1, 1]))
        diff = tf.transpose(shard - self._means[c, :, :], perm=[1, 0, 2])
        m_left = tf.batch_matmul(diff, inv_cov)
        all_scores.append(tf.sqrt(tf.batch_matmul(
            m_left, tf.transpose(diff, perm=[0, 2, 1])
        )))
      self._all_scores.append(tf.reshape(
          tf.concat(1, all_scores),
          tf.pack([self._num_examples, self._num_classes])))

    # Distance to the associated class.
    self._all_scores = tf.concat(0, self._all_scores)
    assignments = tf.concat(0, self.assignments())
    rows = tf.to_int64(tf.range(0, self._num_examples))
    indices = tf.concat(1, [tf.expand_dims(rows, 1),
                            tf.expand_dims(assignments, 1)])
    self._scores = tf.gather_nd(self._all_scores, indices)
开发者ID:DavidNemeskey,项目名称:tensorflow,代码行数:33,代码来源:gmm_ops.py


示例8: test_get_predictions_with_feature_maps_of_dynamic_shape

  def test_get_predictions_with_feature_maps_of_dynamic_shape(
      self):
    image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64])
    conv_box_predictor = box_predictor.WeightSharedConvolutionalBoxPredictor(
        is_training=False,
        num_classes=0,
        conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(),
        depth=32,
        num_layers_before_predictor=1,
        box_code_size=4)
    box_predictions = conv_box_predictor.predict(
        [image_features], num_predictions_per_location=[5],
        scope='BoxPredictor')
    box_encodings = tf.concat(box_predictions[box_predictor.BOX_ENCODINGS],
                              axis=1)
    objectness_predictions = tf.concat(box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1)
    init_op = tf.global_variables_initializer()

    resolution = 32
    expected_num_anchors = resolution*resolution*5
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       objectness_predictions_shape) = sess.run(
           [tf.shape(box_encodings), tf.shape(objectness_predictions)],
           feed_dict={image_features:
                      np.random.rand(4, resolution, resolution, 64)})
      self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 4])
      self.assertAllEqual(objectness_predictions_shape,
                          [4, expected_num_anchors, 1])
开发者ID:ALISCIFP,项目名称:models,代码行数:31,代码来源:box_predictor_test.py


示例9: random_shift

 def random_shift(v):
     if random_shift_y:
         v = tf.concat([v[-random_shift_y:], v, v[:random_shift_y]], 0)
     if random_shift_x:
         v = tf.concat([v[:, -random_shift_x:], v, v[:, :random_shift_x]],
                       1)
     return tf.random_crop(v, [resize[0], resize[1], size[2]])
开发者ID:shikharbahl,项目名称:acai,代码行数:7,代码来源:data.py


示例10: build_lstm_forward

def build_lstm_forward(H, x, googlenet, phase, reuse):
    grid_size = H['arch']['grid_width'] * H['arch']['grid_height']
    outer_size = grid_size * H['arch']['batch_size']
    input_mean = 117.
    x -= input_mean
    Z = googlenet_load.model(x, googlenet, H)
    with tf.variable_scope('decoder', reuse=reuse):
        scale_down = 0.01
        if H['arch']['early_dropout'] and phase == 'train':
            Z = tf.nn.dropout(Z, 0.5)
        lstm_input = tf.reshape(Z * scale_down, (H['arch']['batch_size'] * grid_size, 1024))
        lstm_outputs = build_lstm_inner(lstm_input, H)

        pred_boxes = []
        pred_logits = []
        for i in range(H['arch']['rnn_len']):
            output = lstm_outputs[i]
            if H['arch']['late_dropout'] and phase == 'train':
                output = tf.nn.dropout(output, 0.5)
            box_weights = tf.get_variable('box_ip%d' % i, shape=(H['arch']['lstm_size'], 4),
                initializer=tf.random_uniform_initializer(-0.1, 0.1))
            conf_weights = tf.get_variable('conf_ip%d' % i, shape=(H['arch']['lstm_size'], 2),
                initializer=tf.random_uniform_initializer(-0.1, 0.1))
            pred_boxes.append(tf.reshape(tf.matmul(output, box_weights) * 50,
                                         [outer_size, 1, 4]))
            pred_logits.append(tf.reshape(tf.matmul(output, conf_weights),
                                         [outer_size, 1, 2]))
        pred_boxes = tf.concat(1, pred_boxes)
        pred_logits = tf.concat(1, pred_logits)
        pred_logits_squash = tf.reshape(pred_logits,
                                        [outer_size * H['arch']['rnn_len'], 2])
        pred_confidences_squash = tf.nn.softmax(pred_logits_squash)
        pred_confidences = tf.reshape(pred_confidences_squash,
                                      [outer_size, H['arch']['rnn_len'], 2])
    return pred_boxes, pred_logits, pred_confidences
开发者ID:BlakePan,项目名称:TensorBox,代码行数:35,代码来源:train.py


示例11: test_get_correct_box_encoding_and_class_prediction_shapes

  def test_get_correct_box_encoding_and_class_prediction_shapes(self):
    image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32)
    proposal_boxes = tf.random_normal([4, 2, 4], dtype=tf.float32)
    rfcn_box_predictor = box_predictor.RfcnBoxPredictor(
        is_training=False,
        num_classes=2,
        conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(),
        num_spatial_bins=[3, 3],
        depth=4,
        crop_size=[12, 12],
        box_code_size=4
    )
    box_predictions = rfcn_box_predictor.predict(
        [image_features], num_predictions_per_location=[1],
        scope='BoxPredictor',
        proposal_boxes=proposal_boxes)
    box_encodings = tf.concat(
        box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
    class_predictions_with_background = tf.concat(
        box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
        axis=1)

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       class_predictions_shape) = sess.run(
           [tf.shape(box_encodings),
            tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [8, 1, 2, 4])
      self.assertAllEqual(class_predictions_shape, [8, 1, 3])
开发者ID:ALISCIFP,项目名称:models,代码行数:31,代码来源:box_predictor_test.py


示例12: one_hot_matrix

def one_hot_matrix(tensor_in, num_classes, on_value=1.0, off_value=0.0):
    """Encodes indices from given tensor as one-hot tensor.

    TODO(ilblackdragon): Ideally implementation should be
    part of TensorFlow with Eigen-native operation.

    Args:
        tensor_in: Input tensor of shape [N1, N2].
        num_classes: Number of classes to expand index into.
        on_value: Tensor or float, value to fill-in given index.
        off_value: Tensor or float, value to fill-in everything else.
    Returns:
        Tensor of shape [N1, N2, num_classes] with 1.0 for each id in original
        tensor.
    """
    tensor_in = tf.convert_to_tensor(tensor_in)
    sparse_values = tf.to_int64(tf.reshape(tensor_in, [-1, 1]))
    size = tf.shape(sparse_values)[0]
    dims = tf.shape(tensor_in)
    indices = tf.to_int64(tf.reshape(tf.range(0, size), [-1, 1]))
    indices_values = tf.concat(1, [indices, sparse_values])
    outshape = tf.to_int64(expand_concat(0, [size, num_classes]))
    one_hot_vector = tf.sparse_to_dense(indices_values, outshape, on_value, off_value)
    ret = tf.reshape(one_hot_vector, tf.concat(0, [dims, [num_classes]]))
    ret.set_shape(tensor_in.get_shape().concatenate(num_classes))
    return ret
开发者ID:twinklestar93,项目名称:skflow,代码行数:26,代码来源:array_ops.py


示例13: loss_layer

    def loss_layer(self, project_logits, lengths, name=None):

        with tf.variable_scope("crf_loss" if not name else name):
            small = -1000.0
            start_logits = tf.concat(
                [small * tf.ones(shape=[self.batch_size, 1, self.num_tags]), tf.zeros(shape=[self.batch_size, 1, 1])],
                axis=-1)

            pad_logits = tf.cast(small * tf.ones([self.batch_size, self.num_steps, 1]), tf.float32)
            logits = tf.concat([project_logits, pad_logits], axis=-1)
            logits = tf.concat([start_logits, logits], axis=1)
            targets = tf.concat(
                [tf.cast(self.num_tags * tf.ones([self.batch_size, 1]), tf.int32), self.targets], axis=-1)

            self.trans = tf.get_variable(
                "transitions",
                shape=[self.num_tags + 1, self.num_tags + 1],
                initializer=self.initializer)

            log_likelihood, self.trans = crf_log_likelihood(
                inputs=logits,
                tag_indices=targets,
                transition_params=self.trans,
                sequence_lengths=lengths + 1)

            return tf.reduce_mean(-log_likelihood)
开发者ID:forin-xyz,项目名称:FoolNLTK,代码行数:26,代码来源:bi_lstm.py


示例14: __call__

    def __call__(self, inputs, seq_len, keep_prob=1.0, is_train=None, concat_layers=True):
        outputs = [tf.transpose(inputs, [1, 0, 2])]
        for layer in range(self.num_layers):
            gru_fw, gru_bw = self.grus[layer]
            init_fw, init_bw = self.inits[layer]
            mask_fw, mask_bw = self.dropout_mask[layer]
            with tf.variable_scope('fw_{}'.format(layer), reuse=tf.AUTO_REUSE):
                with tf.variable_scope('cudnn_gru', reuse=tf.AUTO_REUSE):
                    out_fw, _ = tf.nn.dynamic_rnn(cell=gru_fw, inputs=outputs[-1] * mask_fw, time_major=True,
                                                  initial_state=tuple(tf.unstack(init_fw, axis=0)))

            with tf.variable_scope('bw_{}'.format(layer), reuse=tf.AUTO_REUSE):
                with tf.variable_scope('cudnn_gru', reuse=tf.AUTO_REUSE):
                    inputs_bw = tf.reverse_sequence(
                        outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
                    out_bw, _ = tf.nn.dynamic_rnn(cell=gru_bw, inputs=inputs_bw, time_major=True,
                                                  initial_state=tuple(tf.unstack(init_bw, axis=0)))
                    out_bw = tf.reverse_sequence(
                        out_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)

            outputs.append(tf.concat([out_fw, out_bw], axis=2))
        if concat_layers:
            res = tf.concat(outputs[1:], axis=2)
        else:
            res = outputs[-1]
        res = tf.transpose(res, [1, 0, 2])
        return res
开发者ID:RileyShe,项目名称:DeepPavlov,代码行数:27,代码来源:utils.py


示例15: _RunAndVerifyGradientsRandom

  def _RunAndVerifyGradientsRandom(self, use_gpu):
    # Random dims of rank 5
    input_shape = np.random.randint(1, 5, size=5)
    # Random number of tensors
    num_tensors = np.random.randint(1, 10)
    # Random dim to concat on
    concat_dim = np.random.randint(5)
    concat_dim_sizes = np.random.randint(1, 5, size=num_tensors)
    with self.test_session(use_gpu=use_gpu):
      inp = []
      inp_tensors = []
      for x in concat_dim_sizes:
        shape = input_shape
        shape[concat_dim] = x
        t = np.random.rand(*shape).astype("f")
        inp.append(t)
        inp_tensors.append(
            tf.constant([float(y) for y in t.flatten()],
                                 shape=shape, dtype=tf.float32))
      c = tf.concat(concat_dim, inp_tensors)
      output_shape = input_shape
      output_shape[concat_dim] = concat_dim_sizes.sum()
      grad_inp = np.random.rand(*output_shape).astype("f")
      grad_tensor = tf.constant([float(x) for x in grad_inp.flatten()],
                                         shape=output_shape)
      grad = tf.gradients([c], inp_tensors, [grad_tensor])
      concated_grad = tf.concat(concat_dim, grad)
      result = concated_grad.eval()

    self.assertAllEqual(result, grad_inp)
开发者ID:adeelzaman,项目名称:tensorflow,代码行数:30,代码来源:concat_op_test.py


示例16: SequenceToImageAndDiff

def SequenceToImageAndDiff(images):
  """Convert image sequence batch into image and diff batch.

    Each image pair is converted to the first image and their diff.
    Batch size will increase if sequence length is larger than 2.

  Args:
    images: Image sequence with shape
        [batch_size, seq_len, image_size, image_size, channel]

  Returns:
    the list of (image, diff) tuples with shape
        [batch_size2, image_size, image_size, channel]. image_sizes are
        [32, 64, 128, 256].
  """
  image_diff_list = []
  image_seq = tf.unstack(images, axis=1)
  for size in [32, 64, 128, 256]:
    resized_images = [
        tf.image.resize_images(i, [size, size]) for i in image_seq]
    diffs = []
    for i in xrange(0, len(resized_images)-1):
      diffs.append(resized_images[i+1] - resized_images[i])
    image_diff_list.append(
        (tf.concat(axis=0, values=resized_images[:-1]), tf.concat(axis=0, values=diffs)))
  return image_diff_list
开发者ID:ALISCIFP,项目名称:models,代码行数:26,代码来源:reader.py


示例17: get_model

def get_model(name):
    name = functools.partial('{}-{}'.format, name)

    self_pos = tf.placeholder(Config.dtype, Config.data_shape, name='self_pos')
    self_ability = tf.placeholder(Config.dtype, Config.data_shape, name='self_ability')
    enemy_pos = tf.placeholder(Config.dtype, Config.data_shape, name='enemy_pos')
    input_label = tf.placeholder(Config.dtype, Config.label_shape, name='input_label')

    x = tf.concat(3, [self_pos, self_ability, enemy_pos], name=name('input_concat'))
    y = input_label

    nl = tf.nn.tanh

    def conv_pip(name, x):
        name = functools.partial('{}_{}'.format, name)

        x = conv2d(name('0'), x, Config.data_shape[3]*2, kernel=3, stride=1, nl=nl)
        x = conv2d(name('1'), x, Config.data_shape[3], kernel=3, stride=1, nl=nl)
        return x

    pred = conv_pip(name('conv0'), x)
    for layer in range(5):
        pred_branch = tf.concat(3, [pred,x], name=name('concate%d'%layer))
        pred += conv_pip(name('conv%d'%(layer+1)), pred_branch)

    x = tf.tanh(pred, name=name('control_tanh'))

    z = tf.mul(tf.exp(x), self_ability)
    z_sum = tf.reduce_sum(z, reduction_indices=[1,2,3], name=name('partition_function')) # partition function

    # another formula of y*logy
    loss = -tf.reduce_sum(tf.mul(x, y), reduction_indices=[1,2,3]) + tf.log(z_sum)
    z_sum = tf.reshape(z_sum, [-1, 1, 1, 1])
    pred = tf.div(z, z_sum, name=name('predict'))
    return Model([self_pos, self_ability, enemy_pos], input_label, loss, pred, debug=z)
开发者ID:milkpku,项目名称:BetaElephant,代码行数:35,代码来源:model.py


示例18: embed_sequences

 def embed_sequences(self, embed_sequence_batch):
     """Return sentence embeddings as a tensor with with shape
     [batch_size, hidden_size * 2]
     """
     forward_values = embed_sequence_batch.values
     forward_mask = embed_sequence_batch.mask
     backward_values = tf.reverse(forward_values, [False, True, False])
     backward_mask = tf.reverse(forward_mask, [False, True])
     # Initialize LSTMs
     self._forward_lstm = LSTM(self.hidden_size, return_sequences=True)
     self._backward_lstm = LSTM(self.hidden_size, return_sequences=True)
     # Pass input through the LSTMs
     # Shape: (batch_size, seq_length, hidden_size)
     forward_seq = self._forward_lstm(forward_values, forward_mask)
     forward_seq.set_shape((None, self.seq_length, self.hidden_size))
     backward_seq = self._backward_lstm(backward_values, backward_mask)
     backward_seq.set_shape((None, self.seq_length, self.hidden_size))
     # Stitch the outputs together --> hidden states (for computing attention)
     # Final dimension: (batch_size, seq_length, hidden_size * 2)
     lstm_states = tf.concat(2, [forward_seq, tf.reverse(backward_seq, [False, True, False])])
     self._hidden_states = SequenceBatch(lstm_states, forward_mask)
     # Stitch the final outputs together --> sequence embedding
     # Final dimension: (batch_size, hidden_size * 2)
     seq_length = tf.shape(forward_values)[1]
     forward_final = tf.slice(forward_seq, [0, seq_length - 1, 0], [-1, 1, self.hidden_size])
     backward_final = tf.slice(backward_seq, [0, seq_length - 1, 0], [-1, 1, self.hidden_size])
     return tf.squeeze(tf.concat(2, [forward_final, backward_final]), [1])
开发者ID:siddk,项目名称:lang2program,代码行数:27,代码来源:model.py


示例19: multilevel_roi_align

def multilevel_roi_align(features, rcnn_boxes, resolution):
    """
    Args:
        features ([tf.Tensor]): 4 FPN feature level 2-5
        rcnn_boxes (tf.Tensor): nx4 boxes
        resolution (int): output spatial resolution
    Returns:
        NxC x res x res
    """
    assert len(features) == 4, features
    # Reassign rcnn_boxes to levels
    level_ids, level_boxes = fpn_map_rois_to_levels(rcnn_boxes)
    all_rois = []

    # Crop patches from corresponding levels
    for i, boxes, featuremap in zip(itertools.count(), level_boxes, features):
        with tf.name_scope('roi_level{}'.format(i + 2)):
            boxes_on_featuremap = boxes * (1.0 / cfg.FPN.ANCHOR_STRIDES[i])
            all_rois.append(roi_align(featuremap, boxes_on_featuremap, resolution))

    all_rois = tf.concat(all_rois, axis=0)  # NCHW
    # Unshuffle to the original order, to match the original samples
    level_id_perm = tf.concat(level_ids, axis=0)  # A permutation of 1~N
    level_id_invert_perm = tf.invert_permutation(level_id_perm)
    all_rois = tf.gather(all_rois, level_id_invert_perm)
    return all_rois
开发者ID:tobyma,项目名称:tensorpack,代码行数:26,代码来源:model.py


示例20: din_fcn_shine

def din_fcn_shine(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False):
    if isinstance(facts, tuple):
        # In case of Bi-RNN, concatenate the forward and the backward RNN
        # outputs.
        facts = tf.concat(facts, 2)

    if time_major:
        # (T,B,D) => (B,T,D)
        facts = tf.array_ops.transpose(facts, [1, 0, 2])
    # Trainable parameters
    mask = tf.equal(mask, tf.ones_like(mask))
    # D value - hidden size of the RNN layer
    facts_size = facts.get_shape().as_list()[-1]
    querry_size = query.get_shape().as_list()[-1]
    query = tf.layers.dense(
        query, facts_size, activation=None, name='f1_trans_shine' + stag)
    query = prelu(query)
    queries = tf.tile(query, [1, tf.shape(facts)[1]])
    queries = tf.reshape(queries, tf.shape(facts))
    din_all = tf.concat(
        [queries, facts, queries - facts, queries * facts], axis=-1)
    d_layer_1_all = tf.layers.dense(
        din_all, facts_size, activation=tf.nn.sigmoid, name='f1_shine_att' + stag)
    d_layer_2_all = tf.layers.dense(
        d_layer_1_all, facts_size, activation=tf.nn.sigmoid, name='f2_shine_att' + stag)
    d_layer_2_all = tf.reshape(d_layer_2_all, tf.shape(facts))
    output = d_layer_2_all
    return output
开发者ID:q64545,项目名称:x-deeplearning,代码行数:28,代码来源:utils.py



注:本文中的tensorflow.concat函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.concat_v2函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.complex函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap