本文整理汇总了Python中sympy.polys.densearith.dmp_mul_ground函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_mul_ground函数的具体用法?Python dmp_mul_ground怎么用?Python dmp_mul_ground使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了dmp_mul_ground函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: dmp_cancel
def dmp_cancel(f, g, u, K, multout=True):
"""
Cancel common factors in a rational function ``f/g``.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.euclidtools import dmp_cancel
>>> f = ZZ.map([[2], [0], [-2]])
>>> g = ZZ.map([[1], [-2], [1]])
>>> dmp_cancel(f, g, 1, ZZ)
([[2], [2]], [[1], [-1]])
"""
if dmp_zero_p(f, u) or dmp_zero_p(g, u):
if multout:
return f, g
else:
return K.one, K.one, f, g
K0 = None
if K.has_Field and K.has_assoc_Ring:
K0, K = K, K.get_ring()
cq, f = dmp_clear_denoms(f, u, K0, K, convert=True)
cp, g = dmp_clear_denoms(g, u, K0, K, convert=True)
else:
cp, cq = K.one, K.one
_, p, q = dmp_inner_gcd(f, g, u, K)
if K0 is not None:
p = dmp_convert(p, u, K, K0)
q = dmp_convert(q, u, K, K0)
K = K0
p_neg = K.is_negative(dmp_ground_LC(p, u, K))
q_neg = K.is_negative(dmp_ground_LC(q, u, K))
if p_neg and q_neg:
p, q = dmp_neg(p, u, K), dmp_neg(q, u, K)
elif p_neg:
cp, p = -cp, dmp_neg(p, u, K)
elif q_neg:
cp, q = -cp, dmp_neg(q, u, K)
if not multout:
return cp, cq, p, q
p = dmp_mul_ground(p, cp, u, K)
q = dmp_mul_ground(q, cq, u, K)
return p, q
开发者ID:addisonc,项目名称:sympy,代码行数:57,代码来源:euclidtools.py
示例2: test_dmp_mul_ground
def test_dmp_mul_ground():
assert dmp_mul_ground(f_0, ZZ(2), 2, ZZ) == [
[[ZZ(2),ZZ(4),ZZ(6)], [ZZ(4)]],
[[ZZ(6)]],
[[ZZ(8),ZZ(10),ZZ(12)], [ZZ(2),ZZ(4),ZZ(2)], [ZZ(2)]]
]
assert dmp_mul_ground(F_0, QQ(1,2), 2, QQ) == [
[[QQ(1,14),QQ(2,14),QQ(3,14)], [QQ(2,14)]],
[[QQ(3,14)]],
[[QQ(4,14),QQ(5,14),QQ(6,14)], [QQ(1,14),QQ(2,14),QQ(1,14)], [QQ(1,14)]]
]
开发者ID:BDGLunde,项目名称:sympy,代码行数:12,代码来源:test_densearith.py
示例3: dmp_zz_wang_lead_coeffs
def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K):
"""Wang/EEZ: Compute correct leading coefficients. """
C, J, v = [], [0]*len(E), u-1
for h in H:
c = dmp_one(v, K)
d = dup_LC(h, K)*cs
for i in reversed(xrange(len(E))):
k, e, (t, _) = 0, E[i], T[i]
while not (d % e):
d, k = d//e, k+1
if k != 0:
c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1
C.append(c)
if any([ not j for j in J ]):
raise ExtraneousFactors # pragma: no cover
CC, HH = [], []
for c, h in zip(C, H):
d = dmp_eval_tail(c, A, v, K)
lc = dup_LC(h, K)
if K.is_one(cs):
cc = lc//d
else:
g = K.gcd(lc, d)
d, cc = d//g, lc//g
h, cs = dup_mul_ground(h, d, K), cs//d
c = dmp_mul_ground(c, cc, v, K)
CC.append(c)
HH.append(h)
if K.is_one(cs):
return f, HH, CC
CCC, HHH = [], []
for c, h in zip(CC, HH):
CCC.append(dmp_mul_ground(c, cs, v, K))
HHH.append(dmp_mul_ground(h, cs, 0, K))
f = dmp_mul_ground(f, cs**(len(H)-1), u, K)
return f, HHH, CCC
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:52,代码来源:factortools.py
示例4: dmp_cancel
def dmp_cancel(f, g, u, K, include=True):
"""
Cancel common factors in a rational function `f/g`.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> R.dmp_cancel(2*x**2 - 2, x**2 - 2*x + 1)
(2*x + 2, x - 1)
"""
K0 = None
if K.has_Field and K.has_assoc_Ring:
K0, K = K, K.get_ring()
cq, f = dmp_clear_denoms(f, u, K0, K, convert=True)
cp, g = dmp_clear_denoms(g, u, K0, K, convert=True)
else:
cp, cq = K.one, K.one
_, p, q = dmp_inner_gcd(f, g, u, K)
if K0 is not None:
_, cp, cq = K.cofactors(cp, cq)
p = dmp_convert(p, u, K, K0)
q = dmp_convert(q, u, K, K0)
K = K0
p_neg = K.is_negative(dmp_ground_LC(p, u, K))
q_neg = K.is_negative(dmp_ground_LC(q, u, K))
if p_neg and q_neg:
p, q = dmp_neg(p, u, K), dmp_neg(q, u, K)
elif p_neg:
cp, p = -cp, dmp_neg(p, u, K)
elif q_neg:
cp, q = -cp, dmp_neg(q, u, K)
if not include:
return cp, cq, p, q
p = dmp_mul_ground(p, cp, u, K)
q = dmp_mul_ground(q, cq, u, K)
return p, q
开发者ID:AdrianPotter,项目名称:sympy,代码行数:51,代码来源:euclidtools.py
示例5: dmp_rr_lcm
def dmp_rr_lcm(f, g, u, K):
"""
Computes polynomial LCM over a ring in `K[X]`.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y, = ring("x,y", ZZ)
>>> f = x**2 + 2*x*y + y**2
>>> g = x**2 + x*y
>>> R.dmp_rr_lcm(f, g)
x**3 + 2*x**2*y + x*y**2
"""
fc, f = dmp_ground_primitive(f, u, K)
gc, g = dmp_ground_primitive(g, u, K)
c = K.lcm(fc, gc)
h = dmp_quo(dmp_mul(f, g, u, K),
dmp_gcd(f, g, u, K), u, K)
return dmp_mul_ground(h, c, u, K)
开发者ID:AdrianPotter,项目名称:sympy,代码行数:26,代码来源:euclidtools.py
示例6: dmp_sqf_list_include
def dmp_sqf_list_include(f, u, K, all=False):
"""
Return square-free decomposition of a polynomial in ``K[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.sqfreetools import dmp_sqf_list_include
>>> f = ZZ.map([[1], [2, 0], [1, 0, 0], [], [], []])
>>> dmp_sqf_list_include(f, 1, ZZ)
[([[1]], 1), ([[1], [1, 0]], 2), ([[1], []], 3)]
>>> dmp_sqf_list_include(f, 1, ZZ, all=True)
[([[1]], 1), ([[1], [1, 0]], 2), ([[1], []], 3)]
"""
if not u:
return dup_sqf_list_include(f, K, all=all)
coeff, factors = dmp_sqf_list(f, u, K, all=all)
if factors and factors[0][1] == 1:
g = dmp_mul_ground(factors[0][0], coeff, u, K)
return [(g, 1)] + factors[1:]
else:
g = dmp_ground(coeff, u)
return [(g, 1)] + factors
开发者ID:FireJade,项目名称:sympy,代码行数:30,代码来源:sqfreetools.py
示例7: dmp_discriminant
def dmp_discriminant(f, u, K):
"""
Computes discriminant of a polynomial in `K[X]`.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y,z,t = ring("x,y,z,t", ZZ)
>>> R.dmp_discriminant(x**2*y + x*z + t)
-4*y*t + z**2
"""
if not u:
return dup_discriminant(f, K)
d, v = dmp_degree(f, u), u - 1
if d <= 0:
return dmp_zero(v)
else:
s = (-1)**((d*(d - 1)) // 2)
c = dmp_LC(f, K)
r = dmp_resultant(f, dmp_diff(f, 1, u, K), u, K)
c = dmp_mul_ground(c, K(s), v, K)
return dmp_quo(r, c, v, K)
开发者ID:AdrianPotter,项目名称:sympy,代码行数:29,代码来源:euclidtools.py
示例8: dmp_rr_lcm
def dmp_rr_lcm(f, g, u, K):
"""
Computes polynomial LCM over a ring in ``K[X]``.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.euclidtools import dmp_rr_lcm
>>> f = ZZ.map([[1], [2, 0], [1, 0, 0]])
>>> g = ZZ.map([[1], [1, 0], []])
>>> dmp_rr_lcm(f, g, 1, ZZ)
[[1], [2, 0], [1, 0, 0], []]
"""
fc, f = dmp_ground_primitive(f, u, K)
gc, g = dmp_ground_primitive(g, u, K)
c = K.lcm(fc, gc)
h = dmp_exquo(dmp_mul(f, g, u, K),
dmp_gcd(f, g, u, K), u, K)
return dmp_mul_ground(h, c, u, K)
开发者ID:addisonc,项目名称:sympy,代码行数:25,代码来源:euclidtools.py
示例9: dmp_discriminant
def dmp_discriminant(f, u, K):
"""
Computes discriminant of a polynomial in ``K[X]``.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.euclidtools import dmp_discriminant
>>> f = ZZ.map([[[[1]], [[]]], [[[1], []]], [[[1, 0]]]])
>>> dmp_discriminant(f, 3, ZZ)
[[[-4, 0]], [[1], [], []]]
"""
if not u:
return dup_discriminant(f, K)
d, v = dmp_degree(f, u), u-1
if d <= 0:
return dmp_zero(v)
else:
s = (-1)**((d*(d-1)) // 2)
c = dmp_LC(f, K)
r = dmp_resultant(f, dmp_diff(f, 1, u, K), u, K)
c = dmp_mul_ground(c, K(s), v, K)
return dmp_exquo(r, c, v, K)
开发者ID:addisonc,项目名称:sympy,代码行数:30,代码来源:euclidtools.py
示例10: dmp_eval
def dmp_eval(f, a, u, K):
"""
Evaluate a polynomial at ``x_0 = a`` in ``K[X]`` using the Horner scheme.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> R.dmp_eval(2*x*y + 3*x + y + 2, 2)
5*y + 8
"""
if not u:
return dup_eval(f, a, K)
if not a:
return dmp_TC(f, K)
result, v = dmp_LC(f, K), u - 1
for coeff in f[1:]:
result = dmp_mul_ground(result, a, v, K)
result = dmp_add(result, coeff, v, K)
return result
开发者ID:asmeurer,项目名称:sympy,代码行数:27,代码来源:densetools.py
示例11: dmp_eval
def dmp_eval(f, a, u, K):
"""
Evaluate a polynomial at ``x_0 = a`` in ``K[X]`` using the Horner scheme.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densetools import dmp_eval
>>> f = ZZ.map([[2, 3], [1, 2]])
>>> dmp_eval(f, 2, 1, ZZ)
[5, 8]
"""
if not u:
return dup_eval(f, a, K)
if not a:
return dmp_TC(f, K)
result, v = dmp_LC(f, K), u - 1
for coeff in f[1:]:
result = dmp_mul_ground(result, a, v, K)
result = dmp_add(result, coeff, v, K)
return result
开发者ID:jenshnielsen,项目名称:sympy,代码行数:29,代码来源:densetools.py
示例12: dmp_clear_denoms
def dmp_clear_denoms(f, u, K0, K1=None, convert=False):
"""
Clear denominators, i.e. transform ``K_0`` to ``K_1``.
Examples
========
>>> from sympy.polys.domains import QQ, ZZ
>>> from sympy.polys.densetools import dmp_clear_denoms
>>> f = [[QQ(1,2)], [QQ(1,3), QQ(1)]]
>>> dmp_clear_denoms(f, 1, QQ, convert=False)
(6, [[3/1], [2/1, 6/1]])
>>> f = [[QQ(1,2)], [QQ(1,3), QQ(1)]]
>>> dmp_clear_denoms(f, 1, QQ, convert=True)
(6, [[3], [2, 6]])
"""
if not u:
return dup_clear_denoms(f, K0, K1, convert=convert)
if K1 is None:
K1 = K0.get_ring()
common = _rec_clear_denoms(f, u, K0, K1)
if not K1.is_one(common):
f = dmp_mul_ground(f, common, u, K0)
if not convert:
return common, f
else:
return common, dmp_convert(f, u, K0, K1)
开发者ID:jenshnielsen,项目名称:sympy,代码行数:34,代码来源:densetools.py
示例13: dmp_sqf_list_include
def dmp_sqf_list_include(f, u, K, all=False):
"""
Return square-free decomposition of a polynomial in ``K[x]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> f = x**5 + 2*x**4*y + x**3*y**2
>>> R.dmp_sqf_list_include(f)
[(1, 1), (x + y, 2), (x, 3)]
>>> R.dmp_sqf_list_include(f, all=True)
[(1, 1), (x + y, 2), (x, 3)]
"""
if not u:
return dup_sqf_list_include(f, K, all=all)
coeff, factors = dmp_sqf_list(f, u, K, all=all)
if factors and factors[0][1] == 1:
g = dmp_mul_ground(factors[0][0], coeff, u, K)
return [(g, 1)] + factors[1:]
else:
g = dmp_ground(coeff, u)
return [(g, 1)] + factors
开发者ID:alhirzel,项目名称:sympy,代码行数:29,代码来源:sqfreetools.py
示例14: dmp_qq_heu_gcd
def dmp_qq_heu_gcd(f, g, u, K0):
"""
Heuristic polynomial GCD in `Q[X]`.
Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
``cff = quo(f, h)``, and ``cfg = quo(g, h)``.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.euclidtools import dmp_qq_heu_gcd
>>> f = [[QQ(1,4)], [QQ(1), QQ(0)], [QQ(1), QQ(0), QQ(0)]]
>>> g = [[QQ(1,2)], [QQ(1), QQ(0)], []]
>>> dmp_qq_heu_gcd(f, g, 1, QQ)
([[1/1], [2/1, 0/1]], [[1/4], [1/2, 0/1]], [[1/2], []])
"""
result = _dmp_ff_trivial_gcd(f, g, u, K0)
if result is not None:
return result
K1 = K0.get_ring()
cf, f = dmp_clear_denoms(f, u, K0, K1)
cg, g = dmp_clear_denoms(g, u, K0, K1)
f = dmp_convert(f, u, K0, K1)
g = dmp_convert(g, u, K0, K1)
h, cff, cfg = dmp_zz_heu_gcd(f, g, u, K1)
h = dmp_convert(h, u, K1, K0)
c = dmp_ground_LC(h, u, K0)
h = dmp_ground_monic(h, u, K0)
cff = dmp_convert(cff, u, K1, K0)
cfg = dmp_convert(cfg, u, K1, K0)
cff = dmp_mul_ground(cff, K0.quo(c, cf), u, K0)
cfg = dmp_mul_ground(cfg, K0.quo(c, cg), u, K0)
return h, cff, cfg
开发者ID:dyao-vu,项目名称:meta-core,代码行数:47,代码来源:euclidtools.py
示例15: dmp_qq_heu_gcd
def dmp_qq_heu_gcd(f, g, u, K0):
"""
Heuristic polynomial GCD in `Q[X]`.
Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
``cff = quo(f, h)``, and ``cfg = quo(g, h)``.
Examples
========
>>> from sympy.polys import ring, QQ
>>> R, x,y, = ring("x,y", QQ)
>>> f = QQ(1,4)*x**2 + x*y + y**2
>>> g = QQ(1,2)*x**2 + x*y
>>> R.dmp_qq_heu_gcd(f, g)
(x + 2*y, 1/4*x + 1/2*y, 1/2*x)
"""
result = _dmp_ff_trivial_gcd(f, g, u, K0)
if result is not None:
return result
K1 = K0.get_ring()
cf, f = dmp_clear_denoms(f, u, K0, K1)
cg, g = dmp_clear_denoms(g, u, K0, K1)
f = dmp_convert(f, u, K0, K1)
g = dmp_convert(g, u, K0, K1)
h, cff, cfg = dmp_zz_heu_gcd(f, g, u, K1)
h = dmp_convert(h, u, K1, K0)
c = dmp_ground_LC(h, u, K0)
h = dmp_ground_monic(h, u, K0)
cff = dmp_convert(cff, u, K1, K0)
cfg = dmp_convert(cfg, u, K1, K0)
cff = dmp_mul_ground(cff, K0.quo(c, cf), u, K0)
cfg = dmp_mul_ground(cfg, K0.quo(c, cg), u, K0)
return h, cff, cfg
开发者ID:AdrianPotter,项目名称:sympy,代码行数:47,代码来源:euclidtools.py
示例16: test_dmp_ground_primitive
def test_dmp_ground_primitive():
assert dmp_ground_primitive([[]], 1, ZZ) == (ZZ(0), [[]])
assert dmp_ground_primitive(f_0, 2, ZZ) == (ZZ(1), f_0)
assert dmp_ground_primitive(dmp_mul_ground(f_0, ZZ(2), 2, ZZ), 2, ZZ) == (ZZ(2), f_0)
assert dmp_ground_primitive(f_1, 2, ZZ) == (ZZ(1), f_1)
assert dmp_ground_primitive(dmp_mul_ground(f_1, ZZ(3), 2, ZZ), 2, ZZ) == (ZZ(3), f_1)
assert dmp_ground_primitive(f_2, 2, ZZ) == (ZZ(1), f_2)
assert dmp_ground_primitive(dmp_mul_ground(f_2, ZZ(4), 2, ZZ), 2, ZZ) == (ZZ(4), f_2)
assert dmp_ground_primitive(f_3, 2, ZZ) == (ZZ(1), f_3)
assert dmp_ground_primitive(dmp_mul_ground(f_3, ZZ(5), 2, ZZ), 2, ZZ) == (ZZ(5), f_3)
assert dmp_ground_primitive(f_4, 2, ZZ) == (ZZ(1), f_4)
assert dmp_ground_primitive(dmp_mul_ground(f_4, ZZ(6), 2, ZZ), 2, ZZ) == (ZZ(6), f_4)
assert dmp_ground_primitive(f_5, 2, ZZ) == (ZZ(1), f_5)
assert dmp_ground_primitive(dmp_mul_ground(f_5, ZZ(7), 2, ZZ), 2, ZZ) == (ZZ(7), f_5)
assert dmp_ground_primitive(f_6, 3, ZZ) == (ZZ(1), f_6)
assert dmp_ground_primitive(dmp_mul_ground(f_6, ZZ(8), 3, ZZ), 3, ZZ) == (ZZ(8), f_6)
assert dmp_ground_primitive([[ZZ(2)]], 1, ZZ) == (ZZ(2), [[ZZ(1)]])
assert dmp_ground_primitive([[QQ(2)]], 1, QQ) == (QQ(1), [[QQ(2)]])
开发者ID:hitej,项目名称:meta-core,代码行数:26,代码来源:test_densetools.py
示例17: test_dmp_ground_content
def test_dmp_ground_content():
assert dmp_ground_content([[]], 1, ZZ) == ZZ(0)
assert dmp_ground_content([[]], 1, QQ) == QQ(0)
assert dmp_ground_content([[1]], 1, ZZ) == ZZ(1)
assert dmp_ground_content([[-1]], 1, ZZ) == ZZ(1)
assert dmp_ground_content([[1], [1]], 1, ZZ) == ZZ(1)
assert dmp_ground_content([[2], [2]], 1, ZZ) == ZZ(2)
assert dmp_ground_content([[1], [2], [1]], 1, ZZ) == ZZ(1)
assert dmp_ground_content([[2], [4], [2]], 1, ZZ) == ZZ(2)
assert dmp_ground_content([[QQ(2, 3)], [QQ(4, 5)]], 1, QQ) == QQ(1)
assert dmp_ground_content(f_0, 2, ZZ) == ZZ(1)
assert dmp_ground_content(dmp_mul_ground(f_0, ZZ(2), 2, ZZ), 2, ZZ) == ZZ(2)
assert dmp_ground_content(f_1, 2, ZZ) == ZZ(1)
assert dmp_ground_content(dmp_mul_ground(f_1, ZZ(3), 2, ZZ), 2, ZZ) == ZZ(3)
assert dmp_ground_content(f_2, 2, ZZ) == ZZ(1)
assert dmp_ground_content(dmp_mul_ground(f_2, ZZ(4), 2, ZZ), 2, ZZ) == ZZ(4)
assert dmp_ground_content(f_3, 2, ZZ) == ZZ(1)
assert dmp_ground_content(dmp_mul_ground(f_3, ZZ(5), 2, ZZ), 2, ZZ) == ZZ(5)
assert dmp_ground_content(f_4, 2, ZZ) == ZZ(1)
assert dmp_ground_content(dmp_mul_ground(f_4, ZZ(6), 2, ZZ), 2, ZZ) == ZZ(6)
assert dmp_ground_content(f_5, 2, ZZ) == ZZ(1)
assert dmp_ground_content(dmp_mul_ground(f_5, ZZ(7), 2, ZZ), 2, ZZ) == ZZ(7)
assert dmp_ground_content(f_6, 3, ZZ) == ZZ(1)
assert dmp_ground_content(dmp_mul_ground(f_6, ZZ(8), 3, ZZ), 3, ZZ) == ZZ(8)
开发者ID:hitej,项目名称:meta-core,代码行数:32,代码来源:test_densetools.py
示例18: dmp_diff
def dmp_diff(f, m, u, K):
"""
``m``-th order derivative in ``x_0`` of a polynomial in ``K[X]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densetools import dmp_diff
>>> f = ZZ.map([[1, 2, 3], [2, 3, 1]])
>>> dmp_diff(f, 1, 1, ZZ)
[[1, 2, 3]]
>>> dmp_diff(f, 2, 1, ZZ)
[[]]
"""
if not u:
return dup_diff(f, m, K)
if m <= 0:
return f
n = dmp_degree(f, u)
if n < m:
return dmp_zero(u)
deriv, v = [], u - 1
if m == 1:
for coeff in f[:-m]:
deriv.append(dmp_mul_ground(coeff, K(n), v, K))
n -= 1
else:
for coeff in f[:-m]:
k = n
for i in xrange(n - 1, n - m, -1):
k *= i
deriv.append(dmp_mul_ground(coeff, K(k), v, K))
n -= 1
return dmp_strip(deriv, u)
开发者ID:jenshnielsen,项目名称:sympy,代码行数:45,代码来源:densetools.py
示例19: dmp_diff
def dmp_diff(f, m, u, K):
"""
``m``-th order derivative in ``x_0`` of a polynomial in ``K[X]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1
>>> R.dmp_diff(f, 1)
y**2 + 2*y + 3
>>> R.dmp_diff(f, 2)
0
"""
if not u:
return dup_diff(f, m, K)
if m <= 0:
return f
n = dmp_degree(f, u)
if n < m:
return dmp_zero(u)
deriv, v = [], u - 1
if m == 1:
for coeff in f[:-m]:
deriv.append(dmp_mul_ground(coeff, K(n), v, K))
n -= 1
else:
for coeff in f[:-m]:
k = n
for i in range(n - 1, n - m, -1):
k *= i
deriv.append(dmp_mul_ground(coeff, K(k), v, K))
n -= 1
return dmp_strip(deriv, u)
开发者ID:asmeurer,项目名称:sympy,代码行数:45,代码来源:densetools.py
示例20: dmp_factor_list_include
def dmp_factor_list_include(f, u, K):
"""Factor polynomials into irreducibles in `K[X]`. """
if not u:
return dup_factor_list_include(f, K)
coeff, factors = dmp_factor_list(f, u, K)
if not factors:
return [(dmp_ground(coeff, u), 1)]
else:
g = dmp_mul_ground(factors[0][0], coeff, u, K)
return [(g, factors[0][1])] + factors[1:]
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:12,代码来源:factortools.py
注:本文中的sympy.polys.densearith.dmp_mul_ground函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论