本文整理汇总了Python中sympy.polys.densearith.dmp_mul函数的典型用法代码示例。如果您正苦于以下问题:Python dmp_mul函数的具体用法?Python dmp_mul怎么用?Python dmp_mul使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了dmp_mul函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: dmp_fateman_poly_F_1
def dmp_fateman_poly_F_1(n, K):
"""Fateman's GCD benchmark: trivial GCD """
u = [K(1), K(0)]
for i in xrange(0, n):
u = [dmp_one(i, K), u]
v = [K(1), K(0), K(0)]
for i in xrange(0, n):
v = [dmp_one(i, K), dmp_zero(i), v]
m = n - 1
U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K)
V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K)
f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]]
W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K)
Y = dmp_raise(f, m, 1, K)
F = dmp_mul(U, V, n, K)
G = dmp_mul(W, Y, n, K)
H = dmp_one(n, K)
return F, G, H
开发者ID:Acebulf,项目名称:sympy,代码行数:28,代码来源:specialpolys.py
示例2: mul
def mul(f, g):
"""Multiply two multivariate fractions `f` and `g`. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_mul(F_num, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_mul(F_num, G_num, lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
开发者ID:fxkr,项目名称:sympy,代码行数:13,代码来源:polyclasses.py
示例3: quo
def quo(f, g):
"""Computes quotient of fractions `f` and `g`. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = F_num, dmp_mul(F_den, G, lev, dom)
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_mul(F_num, G_den, lev, dom)
den = dmp_mul(F_den, G_num, lev, dom)
return per(num, den)
开发者ID:fxkr,项目名称:sympy,代码行数:13,代码来源:polyclasses.py
示例4: sub
def sub(f, g):
"""Subtract two multivariate fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = dmp_sub_mul(F_num, F_den, G, lev, dom), F_den
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_sub(dmp_mul(F_num, G_den, lev, dom),
dmp_mul(F_den, G_num, lev, dom), lev, dom)
den = dmp_mul(F_den, G_den, lev, dom)
return per(num, den)
开发者ID:Ryzh,项目名称:sympy,代码行数:14,代码来源:polyclasses.py
示例5: dmp_compose
def dmp_compose(f, g, u, K):
"""
Evaluate functional composition ``f(g)`` in ``K[X]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densetools import dmp_compose
>>> f = ZZ.map([[1, 2], [1, 0]])
>>> g = ZZ.map([[1, 0]])
>>> dmp_compose(f, g, 1, ZZ)
[[1, 3, 0]]
"""
if not u:
return dup_compose(f, g, K)
if dmp_zero_p(f, u):
return f
h = [f[0]]
for c in f[1:]:
h = dmp_mul(h, g, u, K)
h = dmp_add_term(h, c, 0, u, K)
return h
开发者ID:jenshnielsen,项目名称:sympy,代码行数:30,代码来源:densetools.py
示例6: dmp_compose
def dmp_compose(f, g, u, K):
"""
Evaluate functional composition ``f(g)`` in ``K[X]``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> R.dmp_compose(x*y + 2*x + y, y)
y**2 + 3*y
"""
if not u:
return dup_compose(f, g, K)
if dmp_zero_p(f, u):
return f
h = [f[0]]
for c in f[1:]:
h = dmp_mul(h, g, u, K)
h = dmp_add_term(h, c, 0, u, K)
return h
开发者ID:asmeurer,项目名称:sympy,代码行数:27,代码来源:densetools.py
示例7: dmp_rr_lcm
def dmp_rr_lcm(f, g, u, K):
"""
Computes polynomial LCM over a ring in `K[X]`.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y, = ring("x,y", ZZ)
>>> f = x**2 + 2*x*y + y**2
>>> g = x**2 + x*y
>>> R.dmp_rr_lcm(f, g)
x**3 + 2*x**2*y + x*y**2
"""
fc, f = dmp_ground_primitive(f, u, K)
gc, g = dmp_ground_primitive(g, u, K)
c = K.lcm(fc, gc)
h = dmp_quo(dmp_mul(f, g, u, K),
dmp_gcd(f, g, u, K), u, K)
return dmp_mul_ground(h, c, u, K)
开发者ID:AdrianPotter,项目名称:sympy,代码行数:26,代码来源:euclidtools.py
示例8: dmp_rr_lcm
def dmp_rr_lcm(f, g, u, K):
"""
Computes polynomial LCM over a ring in ``K[X]``.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.euclidtools import dmp_rr_lcm
>>> f = ZZ.map([[1], [2, 0], [1, 0, 0]])
>>> g = ZZ.map([[1], [1, 0], []])
>>> dmp_rr_lcm(f, g, 1, ZZ)
[[1], [2, 0], [1, 0, 0], []]
"""
fc, f = dmp_ground_primitive(f, u, K)
gc, g = dmp_ground_primitive(g, u, K)
c = K.lcm(fc, gc)
h = dmp_exquo(dmp_mul(f, g, u, K),
dmp_gcd(f, g, u, K), u, K)
return dmp_mul_ground(h, c, u, K)
开发者ID:addisonc,项目名称:sympy,代码行数:25,代码来源:euclidtools.py
示例9: dmp_fateman_poly_F_3
def dmp_fateman_poly_F_3(n, K):
"""Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
u = dup_from_raw_dict({n+1: K.one}, K)
for i in xrange(0, n-1):
u = dmp_add_term([u], dmp_one(i, K), n+1, i+1, K)
v = dmp_add_term(u, dmp_ground(K(2), n-2), 0, n, K)
f = dmp_sqr(dmp_add_term([dmp_neg(v, n-1, K)], dmp_one(n-1, K), n+1, n, K), n, K)
g = dmp_sqr(dmp_add_term([v], dmp_one(n-1, K), n+1, n, K), n, K)
v = dmp_add_term(u, dmp_one(n-2, K), 0, n-1, K)
h = dmp_sqr(dmp_add_term([v], dmp_one(n-1, K), n+1, n, K), n, K)
return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
开发者ID:addisonc,项目名称:sympy,代码行数:17,代码来源:specialpolys.py
示例10: quo
def quo(f, g):
"""Computes quotient of fractions ``f`` and ``g``. """
if isinstance(g, DMP):
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
num, den = F_num, dmp_mul(F_den, G, lev, dom)
else:
lev, dom, per, F, G = f.frac_unify(g)
(F_num, F_den), (G_num, G_den) = F, G
num = dmp_mul(F_num, G_den, lev, dom)
den = dmp_mul(F_den, G_num, lev, dom)
res = per(num, den)
if f.ring is not None and res not in f.ring:
from sympy.polys.polyerrors import ExactQuotientFailed
raise ExactQuotientFailed(f, g, f.ring)
return res
开发者ID:Ryzh,项目名称:sympy,代码行数:17,代码来源:polyclasses.py
示例11: dmp_fateman_poly_F_2
def dmp_fateman_poly_F_2(n, K):
"""Fateman's GCD benchmark: linearly dense quartic inputs """
u = [K(1), K(0)]
for i in xrange(0, n - 1):
u = [dmp_one(i, K), u]
m = n - 1
v = dmp_add_term(u, dmp_ground(K(2), m - 1), 0, n, K)
f = dmp_sqr([dmp_one(m, K), dmp_neg(v, m, K)], n, K)
g = dmp_sqr([dmp_one(m, K), v], n, K)
v = dmp_add_term(u, dmp_one(m - 1, K), 0, n, K)
h = dmp_sqr([dmp_one(m, K), v], n, K)
return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
开发者ID:Acebulf,项目名称:sympy,代码行数:19,代码来源:specialpolys.py
示例12: dmp_zz_wang_lead_coeffs
def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K):
"""Wang/EEZ: Compute correct leading coefficients. """
C, J, v = [], [0]*len(E), u-1
for h in H:
c = dmp_one(v, K)
d = dup_LC(h, K)*cs
for i in reversed(xrange(len(E))):
k, e, (t, _) = 0, E[i], T[i]
while not (d % e):
d, k = d//e, k+1
if k != 0:
c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1
C.append(c)
if any([ not j for j in J ]):
raise ExtraneousFactors # pragma: no cover
CC, HH = [], []
for c, h in zip(C, H):
d = dmp_eval_tail(c, A, v, K)
lc = dup_LC(h, K)
if K.is_one(cs):
cc = lc//d
else:
g = K.gcd(lc, d)
d, cc = d//g, lc//g
h, cs = dup_mul_ground(h, d, K), cs//d
c = dmp_mul_ground(c, cc, v, K)
CC.append(c)
HH.append(h)
if K.is_one(cs):
return f, HH, CC
CCC, HHH = [], []
for c, h in zip(CC, HH):
CCC.append(dmp_mul_ground(c, cs, v, K))
HHH.append(dmp_mul_ground(h, cs, 0, K))
f = dmp_mul_ground(f, cs**(len(H)-1), u, K)
return f, HHH, CCC
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:52,代码来源:factortools.py
示例13: dmp_zz_wang_hensel_lifting
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
"""Wang/EEZ: Parallel Hensel lifting algorithm. """
S, n, v = [f], len(A), u-1
H = list(H)
for i, a in enumerate(reversed(A[1:])):
s = dmp_eval_in(S[0], a, n-i, u-i, K)
S.insert(0, dmp_ground_trunc(s, p, v-i, K))
d = max(dmp_degree_list(f, u)[1:])
for j, s, a in zip(xrange(2, n+2), S, A):
G, w = list(H), j-1
I, J = A[:j-2], A[j-1:]
for i, (h, lc) in enumerate(zip(H, LC)):
lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w-1, K)
H[i] = [lc] + dmp_raise(h[1:], 1, w-1, K)
m = dmp_nest([K.one, -a], w, K)
M = dmp_one(w, K)
c = dmp_sub(s, dmp_expand(H, w, K), w, K)
dj = dmp_degree_in(s, w, w)
for k in xrange(0, dj):
if dmp_zero_p(c, w):
break
M = dmp_mul(M, m, w, K)
C = dmp_diff_eval_in(c, k+1, a, w, w, K)
if not dmp_zero_p(C, w-1):
C = dmp_quo_ground(C, K.factorial(k+1), w-1, K)
T = dmp_zz_diophantine(G, C, I, d, p, w-1, K)
for i, (h, t) in enumerate(zip(H, T)):
h = dmp_add_mul(h, dmp_raise(t, 1, w-1, K), M, w, K)
H[i] = dmp_ground_trunc(h, p, w, K)
h = dmp_sub(s, dmp_expand(H, w, K), w, K)
c = dmp_ground_trunc(h, p, w, K)
if dmp_expand(H, u, K) != f:
raise ExtraneousFactors # pragma: no cover
else:
return H
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:50,代码来源:factortools.py
示例14: dup_real_imag
def dup_real_imag(f, K):
"""
Return bivariate polynomials ``f1`` and ``f2``, such that ``f = f1 + f2*I``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.densetools import dup_real_imag
>>> dup_real_imag([ZZ(1), ZZ(1), ZZ(1), ZZ(1)], ZZ)
([[1], [1], [-3, 0, 1], [-1, 0, 1]], [[3, 0], [2, 0], [-1, 0, 1, 0]])
"""
if not K.is_ZZ and not K.is_QQ:
raise DomainError(
"computing real and imaginary parts is not supported over %s" % K)
f1 = dmp_zero(1)
f2 = dmp_zero(1)
if not f:
return f1, f2
g = [[[K.one, K.zero]], [[K.one], []]]
h = dmp_ground(f[0], 2)
for c in f[1:]:
h = dmp_mul(h, g, 2, K)
h = dmp_add_term(h, dmp_ground(c, 1), 0, 2, K)
H = dup_to_raw_dict(h)
for k, h in H.iteritems():
m = k % 4
if not m:
f1 = dmp_add(f1, h, 1, K)
elif m == 1:
f2 = dmp_add(f2, h, 1, K)
elif m == 2:
f1 = dmp_sub(f1, h, 1, K)
else:
f2 = dmp_sub(f2, h, 1, K)
return f1, f2
开发者ID:jenshnielsen,项目名称:sympy,代码行数:46,代码来源:densetools.py
示例15: dup_real_imag
def dup_real_imag(f, K):
"""
Return bivariate polynomials ``f1`` and ``f2``, such that ``f = f1 + f2*I``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> R.dup_real_imag(x**3 + x**2 + x + 1)
(x**3 + x**2 - 3*x*y**2 + x - y**2 + 1, 3*x**2*y + 2*x*y - y**3 + y)
"""
if not K.is_ZZ and not K.is_QQ:
raise DomainError("computing real and imaginary parts is not supported over %s" % K)
f1 = dmp_zero(1)
f2 = dmp_zero(1)
if not f:
return f1, f2
g = [[[K.one, K.zero]], [[K.one], []]]
h = dmp_ground(f[0], 2)
for c in f[1:]:
h = dmp_mul(h, g, 2, K)
h = dmp_add_term(h, dmp_ground(c, 1), 0, 2, K)
H = dup_to_raw_dict(h)
for k, h in H.items():
m = k % 4
if not m:
f1 = dmp_add(f1, h, 1, K)
elif m == 1:
f2 = dmp_add(f2, h, 1, K)
elif m == 2:
f1 = dmp_sub(f1, h, 1, K)
else:
f2 = dmp_sub(f2, h, 1, K)
return f1, f2
开发者ID:asmeurer,项目名称:sympy,代码行数:45,代码来源:densetools.py
示例16: dmp_ff_lcm
def dmp_ff_lcm(f, g, u, K):
"""
Computes polynomial LCM over a field in `K[X]`.
Examples
========
>>> from sympy.polys import ring, QQ
>>> R, x,y, = ring("x,y", QQ)
>>> f = QQ(1,4)*x**2 + x*y + y**2
>>> g = QQ(1,2)*x**2 + x*y
>>> R.dmp_ff_lcm(f, g)
x**3 + 4*x**2*y + 4*x*y**2
"""
h = dmp_quo(dmp_mul(f, g, u, K), dmp_gcd(f, g, u, K), u, K)
return dmp_ground_monic(h, u, K)
开发者ID:mattpap,项目名称:sympy,代码行数:20,代码来源:euclidtools.py
示例17: dmp_ff_lcm
def dmp_ff_lcm(f, g, u, K):
"""
Computes polynomial LCM over a field in ``K[X]``.
**Examples**
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.euclidtools import dmp_ff_lcm
>>> f = [[QQ(1,4)], [QQ(1), QQ(0)], [QQ(1), QQ(0), QQ(0)]]
>>> g = [[QQ(1,2)], [QQ(1), QQ(0)], []]
>>> dmp_ff_lcm(f, g, 1, QQ)
[[1/1], [4/1, 0/1], [4/1, 0/1, 0/1], []]
"""
h = dmp_exquo(dmp_mul(f, g, u, K),
dmp_gcd(f, g, u, K), u, K)
return dmp_ground_monic(h, u, K)
开发者ID:addisonc,项目名称:sympy,代码行数:20,代码来源:euclidtools.py
示例18: dmp_zz_diophantine
def dmp_zz_diophantine(F, c, A, d, p, u, K):
"""Wang/EEZ: Solve multivariate Diophantine equations. """
if not A:
S = [ [] for _ in F ]
n = dup_degree(c)
for i, coeff in enumerate(c):
if not coeff:
continue
T = dup_zz_diophantine(F, n-i, p, K)
for j, (s, t) in enumerate(zip(S, T)):
t = dup_mul_ground(t, coeff, K)
S[j] = dup_trunc(dup_add(s, t, K), p, K)
else:
n = len(A)
e = dmp_expand(F, u, K)
a, A = A[-1], A[:-1]
B, G = [], []
for f in F:
B.append(dmp_quo(e, f, u, K))
G.append(dmp_eval_in(f, a, n, u, K))
C = dmp_eval_in(c, a, n, u, K)
v = u - 1
S = dmp_zz_diophantine(G, C, A, d, p, v, K)
S = [ dmp_raise(s, 1, v, K) for s in S ]
for s, b in zip(S, B):
c = dmp_sub_mul(c, s, b, u, K)
c = dmp_ground_trunc(c, p, u, K)
m = dmp_nest([K.one, -a], n, K)
M = dmp_one(n, K)
for k in xrange(0, d):
if dmp_zero_p(c, u):
break
M = dmp_mul(M, m, u, K)
C = dmp_diff_eval_in(c, k+1, a, n, u, K)
if not dmp_zero_p(C, v):
C = dmp_quo_ground(C, K.factorial(k+1), v, K)
T = dmp_zz_diophantine(G, C, A, d, p, v, K)
for i, t in enumerate(T):
T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)
for i, (s, t) in enumerate(zip(S, T)):
S[i] = dmp_add(s, t, u, K)
for t, b in zip(T, B):
c = dmp_sub_mul(c, t, b, u, K)
c = dmp_ground_trunc(c, p, u, K)
S = [ dmp_ground_trunc(s, p, u, K) for s in S ]
return S
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:66,代码来源:factortools.py
示例19: test_dmp_expand
def test_dmp_expand():
assert dmp_expand((), 1, ZZ) == [[1]]
assert dmp_expand(([[1],[2],[3]], [[1],[2]], [[7],[5],[4],[3]]), 1, ZZ) == \
dmp_mul([[1],[2],[3]], dmp_mul([[1],[2]], [[7],[5],[4],[3]], 1, ZZ), 1, ZZ)
开发者ID:BDGLunde,项目名称:sympy,代码行数:4,代码来源:test_densearith.py
示例20: dmp_zz_modular_resultant
def dmp_zz_modular_resultant(f, g, p, u, K):
"""
Compute resultant of ``f`` and ``g`` modulo a prime ``p``.
**Examples**
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.euclidtools import dmp_zz_modular_resultant
>>> f = ZZ.map([[1], [1, 2]])
>>> g = ZZ.map([[2, 1], [3]])
>>> dmp_zz_modular_resultant(f, g, ZZ(5), 1, ZZ)
[-2, 0, 1]
"""
if not u:
return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)
v = u - 1
n = dmp_degree(f, u)
m = dmp_degree(g, u)
N = dmp_degree_in(f, 1, u)
M = dmp_degree_in(g, 1, u)
B = n*M + m*N
D, a = [K.one], -K.one
r = dmp_zero(v)
while dup_degree(D) <= B:
while True:
a += K.one
if a == p:
raise HomomorphismFailed('no luck')
F = dmp_eval_in(f, gf_int(a, p), 1, u, K)
if dmp_degree(F, v) == n:
G = dmp_eval_in(g, gf_int(a, p), 1, u, K)
if dmp_degree(G, v) == m:
break
R = dmp_zz_modular_resultant(F, G, p, v, K)
e = dmp_eval(r, a, v, K)
if not v:
R = dup_strip([R])
e = dup_strip([e])
else:
R = [R]
e = [e]
d = K.invert(dup_eval(D, a, K), p)
d = dup_mul_ground(D, d, K)
d = dmp_raise(d, v, 0, K)
c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
r = dmp_add(r, c, v, K)
r = dmp_ground_trunc(r, p, v, K)
D = dup_mul(D, [K.one, -a], K)
D = dup_trunc(D, p, K)
return r
开发者ID:addisonc,项目名称:sympy,代码行数:70,代码来源:euclidtools.py
注:本文中的sympy.polys.densearith.dmp_mul函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论