本文整理汇总了Python中sympy.functions.log函数的典型用法代码示例。如果您正苦于以下问题:Python log函数的具体用法?Python log怎么用?Python log使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了log函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_functions_basic
def test_functions_basic():
assert oclcode(abs(i)) == "abs(i)"
assert oclcode(abs(x)) == "fabs(x)"
assert oclcode(log(x)) == "log(x)"
assert oclcode(log(x, 2)) == "log2(x)"
assert oclcode(log(x, 10)) == "log10(x)"
assert oclcode(log(x, 3)) == "log(x)/log(3)"
开发者ID:hunse,项目名称:codify,代码行数:7,代码来源:test_oclcode.py
示例2: test_2
def test_2():
test = [
[(a + b*x)/x, x, S(2), b*x + a*log(x)],
[x**S(5)/(a + b*x), x, S(2), a**S(4)*x/b**S(5) - S(1)/S(2)*a**S(3)*x**S(2)/b**S(4) + S(1)/S(3)*a**S(2)*x**S(3)/b**S(3) - S(1)/S(4)*a*x**S(4)/b**S(2) + S(1)/S(5)*x**S(5)/b - a**S(5)*log(a + b*x)/b**S(6)],
[S(1)/(a + b*x)**S(2), x, S(1), ( - S(1))/(b*(a + b*x))],
[S(1)/(x*(a + b*x)**S(3)), x, S(2), S(1)/S(2)/(a*(a + b*x)**S(2)) + S(1)/(a**S(2)*(a + b*x)) + log(x)/a**S(3) - log(a + b*x)/a**S(3)],
[S(1)/(S(2) + S(2)*x), x, S(1), S(1)/S(2)*log(S(1) + x)],
[S(1)/(x*(S(1) + b*x)), x, S(3), log(x) - log(S(1) + b*x)],
[x**S(3)*sqrt(a + b*x), x, S(2), - S(2)/S(3)*a**S(3)*(a + b*x)**(S(3)/S(2))/b**S(4) + S(6)/S(5)*a**S(2)*(a + b*x)**(S(5)/S(2))/b**S(4) - S(6)/S(7)*a*(a + b*x)**(S(7)/S(2))/b**S(4) + S(2)/S(9)*(a + b*x)**(S(9)/S(2))/b**S(4)],
[(a + b*x)**(S(3)/S(2)), x, S(1), S(2)/S(5)*(a + b*x)**(S(5)/S(2))/b],
[x**S(4)/sqrt(a + b*x), x, S(2), - S(8)/S(3)*a**S(3)*(a + b*x)**(S(3)/S(2))/b**S(5) + S(12)/S(5)*a**S(2)*(a + b*x)**(S(5)/S(2))/b**S(5) - S(8)/S(7)*a*(a + b*x)**(S(7)/S(2))/b**S(5) + S(2)/S(9)*(a + b*x)**(S(9)/S(2))/b**S(5) + S(2)*a**S(4)*sqrt(a + b*x)/b**S(5)],
[S(1)/sqrt(a + b*x), x, S(1), S(2)*sqrt(a + b*x)/b],
[S(1)/(x*(a + b*x)**(S(3)/S(2))), x, S(3), - S(2)*arctanh(sqrt(a + b*x)/sqrt(a))/a**(S(3)/S(2)) + S(2)/(a*sqrt(a + b*x))],
[S(1)/(x**S(2)*( - a + b*x)**(S(3)/S(2))), x, S(4), - S(3)*b*arctan(sqrt( - a + b*x)/sqrt(a))/a**(S(5)/S(2)) + ( - S(2))/(a*x*sqrt( - a + b*x)) - S(3)*sqrt( - a + b*x)/(a**S(2)*x)],
[x**S(3)*(a + b*x)**(S(1)/S(3)), x, S(2), - S(3)/S(4)*a**S(3)*(a + b*x)**(S(4)/S(3))/b**S(4) + S(9)/S(7)*a**S(2)*(a + b*x)**(S(7)/S(3))/b**S(4) - S(9)/S(10)*a*(a + b*x)**(S(10)/S(3))/b**S(4) + S(3)/S(13)*(a + b*x)**(S(13)/S(3))/b**S(4)],
[x**S(2)*(a + b*x)**(S(2)/S(3)), x, S(2), S(3)/S(5)*a**S(2)*(a + b*x)**(S(5)/S(3))/b**S(3) - S(3)/S(4)*a*(a + b*x)**(S(8)/S(3))/b**S(3) + S(3)/S(11)*(a + b*x)**(S(11)/S(3))/b**S(3)],
[x**S(2)/(a + b*x)**(S(1)/S(3)), x, S(2), S(3)/S(2)*a**S(2)*(a + b*x)**(S(2)/S(3))/b**S(3) - S(6)/S(5)*a*(a + b*x)**(S(5)/S(3))/b**S(3) + S(3)/S(8)*(a + b*x)**(S(8)/S(3))/b**S(3)],
[x**S(3)/( - a + b*x)**(S(1)/S(3)), x, S(2), S(3)/S(2)*a**S(3)*( - a + b*x)**(S(2)/S(3))/b**S(4) + S(9)/S(5)*a**S(2)*( - a + b*x)**(S(5)/S(3))/b**S(4) + S(9)/S(8)*a*( - a + b*x)**(S(8)/S(3))/b**S(4) + S(3)/S(11)*( - a + b*x)**(S(11)/S(3))/b**S(4)],
]
for i in test:
r = rubi_integrate(i[0], i[1])
if len(i) == 5:
assert rubi_test(r, i[1], i[3], expand=True, _diff=True) or rubi_test(r, i[1], i[4], expand=True, _diff=True)
else:
assert rubi_test(r, i[1], i[3], expand=True, _diff=True)
开发者ID:Lenqth,项目名称:sympy,代码行数:26,代码来源:test_1_2.py
示例3: _generate_patterns
def _generate_patterns():
"""
Generates patterns for transcendental equations.
This is lazily calculated (called) in the tsolve() function and stored in
the patterns global variable.
"""
tmp1 = _f ** (_h-(_c*_g/_b))
tmp2 = (-_e*tmp1/_a)**(1/_d)
global _patterns
_patterns = [
(_a*(_b*_x+_c)**_d + _e ,
((-(_e/_a))**(1/_d)-_c)/_b),
(_b+_c*exp(_d*_x+_e) ,
(log(-_b/_c)-_e)/_d),
(_a*_x+_b+_c*exp(_d*_x+_e) ,
-_b/_a-LambertW(_c*_d*exp(_e-_b*_d/_a)/_a)/_d),
(_b+_c*_f**(_d*_x+_e) ,
(log(-_b/_c)-_e*log(_f))/_d/log(_f)),
(_a*_x+_b+_c*_f**(_d*_x+_e) ,
-_b/_a-LambertW(_c*_d*_f**(_e-_b*_d/_a)*log(_f)/_a)/_d/log(_f)),
(_b+_c*log(_d*_x+_e) ,
(exp(-_b/_c)-_e)/_d),
(_a*_x+_b+_c*log(_d*_x+_e) ,
-_e/_d+_c/_a*LambertW(_a/_c/_d*exp(-_b/_c+_a*_e/_c/_d))),
(_a*(_b*_x+_c)**_d + _e*_f**(_g*_x+_h) ,
-_c/_b-_d*LambertW(-tmp2*_g*log(_f)/_b/_d)/_g/log(_f))
]
开发者ID:Ingwar,项目名称:sympy,代码行数:29,代码来源:solvers.py
示例4: test_log
def test_log():
R, x = ring('x', QQ)
p = 1 + x
p1 = rs_log(p, x, 4)/x**2
assert p1 == S(1)/3*x - S(1)/2 + x**(-1)
p = 1 + x +2*x**2/3
p1 = rs_log(p, x, 9)
assert p1 == -17*x**8/648 + 13*x**7/189 - 11*x**6/162 - x**5/45 + \
7*x**4/36 - x**3/3 + x**2/6 + x
p2 = rs_series_inversion(p, x, 9)
p3 = rs_log(p2, x, 9)
assert p3 == -p1
R, x, y = ring('x, y', QQ)
p = 1 + x + 2*y*x**2
p1 = rs_log(p, x, 6)
assert p1 == (4*x**5*y**2 - 2*x**5*y - 2*x**4*y**2 + x**5/5 + 2*x**4*y -
x**4/4 - 2*x**3*y + x**3/3 + 2*x**2*y - x**2/2 + x)
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_log(x + a, x, 5) == -EX(1/(4*a**4))*x**4 + EX(1/(3*a**3))*x**3 \
- EX(1/(2*a**2))*x**2 + EX(1/a)*x + EX(log(a))
assert rs_log(x + x**2*y + a, x, 4) == -EX(a**(-2))*x**3*y + \
EX(1/(3*a**3))*x**3 + EX(1/a)*x**2*y - EX(1/(2*a**2))*x**2 + \
EX(1/a)*x + EX(log(a))
p = x + x**2 + 3
assert rs_log(p, x, 10).compose(x, 5) == EX(log(3) + S(19281291595)/9920232)
开发者ID:asmeurer,项目名称:sympy,代码行数:30,代码来源:test_ring_series.py
示例5: mrv
def mrv(e, x):
"""Returns a SubsSet of most rapidly varying (mrv) subexpressions of 'e',
and e rewritten in terms of these"""
e = powsimp(e, deep=True, combine='exp')
assert isinstance(e, Basic)
if not e.has(x):
return SubsSet(), e
elif e == x:
s = SubsSet()
return s, s[x]
elif e.is_Mul or e.is_Add:
i, d = e.as_independent(x) # throw away x-independent terms
if d.func != e.func:
s, expr = mrv(d, x)
return s, e.func(i, expr)
a, b = d.as_two_terms()
s1, e1 = mrv(a, x)
s2, e2 = mrv(b, x)
return mrv_max1(s1, s2, e.func(i, e1, e2), x)
elif e.is_Pow:
b, e = e.as_base_exp()
if e.has(x):
return mrv(exp(e * log(b)), x)
else:
s, expr = mrv(b, x)
return s, expr**e
elif e.func is log:
s, expr = mrv(e.args[0], x)
return s, log(expr)
elif e.func is exp:
# We know from the theory of this algorithm that exp(log(...)) may always
# be simplified here, and doing so is vital for termination.
if e.args[0].func is log:
return mrv(e.args[0].args[0], x)
if limitinf(e.args[0], x).is_unbounded:
s1 = SubsSet()
e1 = s1[e]
s2, e2 = mrv(e.args[0], x)
su = s1.union(s2)[0]
su.rewrites[e1] = exp(e2)
return mrv_max3(s1, e1, s2, exp(e2), su, e1, x)
else:
s, expr = mrv(e.args[0], x)
return s, exp(expr)
elif e.is_Function:
l = [mrv(a, x) for a in e.args]
l2 = [s for (s, _) in l if s != SubsSet()]
if len(l2) != 1:
# e.g. something like BesselJ(x, x)
raise NotImplementedError("MRV set computation for functions in"
" several variables not implemented.")
s, ss = l2[0], SubsSet()
args = [ss.do_subs(x[1]) for x in l]
return s, e.func(*args)
elif e.is_Derivative:
raise NotImplementedError("MRV set computation for derviatives"
" not implemented yet.")
return mrv(e.args[0], x)
raise NotImplementedError(
"Don't know how to calculate the mrv of '%s'" % e)
开发者ID:AALEKH,项目名称:sympy,代码行数:60,代码来源:gruntz.py
示例6: dig
def dig(self):
""" Number of decimal digits that are guaranteed to be preserved in text.
When converting text -> float -> text, you are guaranteed that at least ``dig``
number of digits are preserved with respect to rounding or overflow.
"""
from sympy.functions import floor, log
return floor(self.nmant * log(2)/log(10))
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:8,代码来源:ast.py
示例7: compare
def compare(a,b,x):
"""Returns "<" if a<b, "=" for a==b, ">" for a>b"""
c = limitinf(log(a)/log(b), x)
if c == 0:
return "<"
elif c in [oo,-oo]:
return ">"
else:
return "="
开发者ID:gnulinooks,项目名称:sympy,代码行数:9,代码来源:gruntz.py
示例8: test_trigintegrate_mixed
def test_trigintegrate_mixed():
assert trigintegrate(sin(x)*sec(x), x) == -log(sin(x)**2 - 1)/2
assert trigintegrate(sin(x)*csc(x), x) == x
assert trigintegrate(sin(x)*cot(x), x) == sin(x)
assert trigintegrate(cos(x)*sec(x), x) == x
assert trigintegrate(cos(x)*csc(x), x) == log(cos(x)**2 - 1)/2
assert trigintegrate(cos(x)*tan(x), x) == -cos(x)
assert trigintegrate(cos(x)*cot(x), x) == log(cos(x) - 1)/2 \
- log(cos(x) + 1)/2 + cos(x)
开发者ID:A-turing-machine,项目名称:sympy,代码行数:10,代码来源:test_trigonometry.py
示例9: decimal_dig
def decimal_dig(self):
""" Number of digits needed to store & load without loss.
Number of decimal digits needed to guarantee that two consecutive conversions
(float -> text -> float) to be idempotent. This is useful when one do not want
to loose precision due to rounding errors when storing a floating point value
as text.
"""
from sympy.functions import ceiling, log
return ceiling((self.nmant + 1) * log(2)/log(10) + 1)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:10,代码来源:ast.py
示例10: rs_log
def rs_log(p, x, prec):
"""
The Logarithm of ``p`` modulo ``O(x**prec)``
Notes
=====
truncation of ``integral dx p**-1*d p/dx`` is used.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_log
>>> R, x = ring('x', QQ)
>>> rs_log(1 + x, x, 8)
1/7*x**7 - 1/6*x**6 + 1/5*x**5 - 1/4*x**4 + 1/3*x**3 - 1/2*x**2 + x
>>> rs_log(x**QQ(3, 2) + 1, x, 5)
1/3*x**(9/2) - 1/2*x**3 + x**(3/2)
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_log, p, x, prec)
R = p.ring
if p == 1:
return R.zero
if _has_constant_term(p, x):
const = 0
zm = R.zero_monom
c = p[zm]
if c == 1:
pass
else:
c_expr = c.as_expr()
if R.domain is EX:
const = log(c_expr)
elif isinstance(c, PolyElement):
try:
const = R(log(c_expr))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
else:
try:
const = R(log(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
dlog = p.diff(x)
dlog = rs_mul(dlog, _series_inversion1(p, x, prec), x, prec - 1)
return rs_integrate(dlog, x) + const
else:
raise NotImplementedError
开发者ID:sumitbh250,项目名称:sympy,代码行数:54,代码来源:ring_series.py
示例11: test_variable_moment
def test_variable_moment():
E = Symbol('E')
I = Symbol('I')
b = Beam(4, E, 2*(4 - x))
b.apply_load(20, 4, -1)
R, M = symbols('R, M')
b.apply_load(R, 0, -1)
b.apply_load(M, 0, -2)
b.bc_deflection = [(0, 0)]
b.bc_slope = [(0, 0)]
b.solve_for_reaction_loads(R, M)
assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0)
- 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand()
assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0)
- 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True))
+ 40*SingularityFunction(x, 4, 1))/E).expand()
b = Beam(4, E - x, I)
b.apply_load(20, 4, -1)
R, M = symbols('R, M')
b.apply_load(R, 0, -1)
b.apply_load(M, 0, -2)
b.bc_deflection = [(0, 0)]
b.bc_slope = [(0, 0)]
b.solve_for_reaction_loads(R, M)
assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0)
+ 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E)
+ E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x)
+ x - 4)*SingularityFunction(x, 4, 0))/I).expand()
开发者ID:cklb,项目名称:sympy,代码行数:30,代码来源:test_beam.py
示例12: test_rubi_integrate
def test_rubi_integrate():
assert rubi_integrate(x, x) == x**2/2
assert rubi_integrate(x**a, x) == x**(a + S(1))/(a + S(1))
assert rubi_integrate(S(1)/x, x) == log(x)
assert rubi_integrate(a*x, x) == a*(S(1)/S(2))*x**S(2)
assert rubi_integrate(1/(x**2*(a + b*x)**2), x) == -b/(a**2*(a + b*x)) - 1/(a**2*x) - 2*b*log(x)/a**3 + 2*b*log(a + b*x)/a**3
assert rubi_integrate(x**6/(a + b*x)**2, x) == (-a**6/(b**7*(a + b*x)) - S(6)*a**5*log(a + b*x)/b**7 + 5*a**4*x/b**6 - S(2)*a**3*x**2/b**5 + a**2*x**3/b**4 - a*x**4/(S(2)*b**3) + x**5/(S(5)*b**2))
assert rubi_integrate(1/(x**2*(a + b*x)**2), x) == -b/(a**2*(a + b*x)) - 1/(a**2*x) - 2*b*log(x)/a**3 + 2*b*log(a + b*x)/a**3
assert rubi_integrate(a + S(1)/x, x) == a*x + log(x)
assert rubi_integrate((a + b*x)**2/x**3, x) == -a**2/(2*x**2) - 2*a*b/x + b**2*log(x)
assert rubi_integrate(a**3*x, x) == S(1)/S(2)*a**3*x**2
assert rubi_integrate((a + b*x)**3/x**3, x) == -a**3/(2*x**2) - 3*a**2*b/x + 3*a*b**2*log(x) + b**3*x
assert rubi_integrate(x**3*(a + b*x), x) == a*x**4/4 + b*x**5/5
assert rubi_integrate((b*x)**m*(d*x + 2)**n, x) == 2**n*(b*x)**(m + 1)*hyper((-n, m + 1), (m + 2,), -d*x/2)/(b*(m + 1))
assert rubi_test(rubi_integrate(1/(1 + x**5), x), x, log(x + S(1))/S(5) + S(2)*Sum(-log((S(2)*x - S(2)*cos(pi*(S(2)*k/S(5) + S(-1)/5)))**S(2) - S(4)*sin(S(2)*pi*k/S(5) + S(3)*pi/S(10))**S(2) + S(4))*cos(pi*(S(2)*k/S(5) + S(-1)/5))/S(2) - (-S(2)*cos(pi*(S(2)*k/S(5) + S(-1)/5))**S(2) + S(2))*atan((-x/cos(pi*(S(2)*k/S(5) + S(-1)/5)) + S(1))/sqrt(-(cos(S(2)*pi*k/S(5) - pi/S(5)) + S(-1))*(cos(S(2)*pi*k/S(5) - pi/S(5)) + S(1))/cos(S(2)*pi*k/S(5) - pi/S(5))**S(2)))/(S(2)*sqrt(-(cos(S(2)*pi*k/S(5) - pi/S(5)) + S(-1))*(cos(S(2)*pi*k/S(5) - pi/S(5)) + S(1))/cos(S(2)*pi*k/S(5) - pi/S(5))**S(2))*cos(pi*(S(2)*k/S(5) + S(-1)/5))), (k, S(1), S(2)))/S(5), _numerical=True)
开发者ID:Lenqth,项目名称:sympy,代码行数:15,代码来源:test_rubi_integrate.py
示例13: test_bounded
def test_bounded():
x, y = symbols('x,y')
assert ask(Q.bounded(x)) == False
assert ask(Q.bounded(x), Q.bounded(x)) == True
assert ask(Q.bounded(x), Q.bounded(y)) == False
assert ask(Q.bounded(x), Q.complex(x)) == False
assert ask(Q.bounded(x+1)) == False
assert ask(Q.bounded(x+1), Q.bounded(x)) == True
assert ask(Q.bounded(x+y)) == None
assert ask(Q.bounded(x+y), Q.bounded(x)) == False
assert ask(Q.bounded(x+1), Q.bounded(x) & Q.bounded(y)) == True
assert ask(Q.bounded(2*x)) == False
assert ask(Q.bounded(2*x), Q.bounded(x)) == True
assert ask(Q.bounded(x*y)) == None
assert ask(Q.bounded(x*y), Q.bounded(x)) == False
assert ask(Q.bounded(x*y), Q.bounded(x) & Q.bounded(y)) == True
assert ask(Q.bounded(x**2)) == False
assert ask(Q.bounded(2**x)) == False
assert ask(Q.bounded(2**x), Q.bounded(x)) == True
assert ask(Q.bounded(x**x)) == False
assert ask(Q.bounded(Rational(1,2) ** x)) == None
assert ask(Q.bounded(Rational(1,2) ** x), Q.positive(x)) == True
assert ask(Q.bounded(Rational(1,2) ** x), Q.negative(x)) == False
assert ask(Q.bounded(sqrt(x))) == False
# sign function
assert ask(Q.bounded(sign(x))) == True
assert ask(Q.bounded(sign(x)), ~Q.bounded(x)) == True
# exponential functions
assert ask(Q.bounded(log(x))) == False
assert ask(Q.bounded(log(x)), Q.bounded(x)) == True
assert ask(Q.bounded(exp(x))) == False
assert ask(Q.bounded(exp(x)), Q.bounded(x)) == True
assert ask(Q.bounded(exp(2))) == True
# trigonometric functions
assert ask(Q.bounded(sin(x))) == True
assert ask(Q.bounded(sin(x)), ~Q.bounded(x)) == True
assert ask(Q.bounded(cos(x))) == True
assert ask(Q.bounded(cos(x)), ~Q.bounded(x)) == True
assert ask(Q.bounded(2*sin(x))) == True
assert ask(Q.bounded(sin(x)**2)) == True
assert ask(Q.bounded(cos(x)**2)) == True
assert ask(Q.bounded(cos(x) + sin(x))) == True
开发者ID:lazovich,项目名称:sympy,代码行数:48,代码来源:test_query.py
示例14: test_bounded
def test_bounded():
x, y = symbols('xy')
assert ask(x, Q.bounded) == False
assert ask(x, Q.bounded, Assume(x, Q.bounded)) == True
assert ask(x, Q.bounded, Assume(y, Q.bounded)) == False
assert ask(x, Q.bounded, Assume(x, Q.complex)) == False
assert ask(x+1, Q.bounded) == False
assert ask(x+1, Q.bounded, Assume(x, Q.bounded)) == True
assert ask(x+y, Q.bounded) == None
assert ask(x+y, Q.bounded, Assume(x, Q.bounded)) == False
assert ask(x+1, Q.bounded, Assume(x, Q.bounded) & \
Assume(y, Q.bounded)) == True
assert ask(2*x, Q.bounded) == False
assert ask(2*x, Q.bounded, Assume(x, Q.bounded)) == True
assert ask(x*y, Q.bounded) == None
assert ask(x*y, Q.bounded, Assume(x, Q.bounded)) == False
assert ask(x*y, Q.bounded, Assume(x, Q.bounded) & \
Assume(y, Q.bounded)) == True
assert ask(x**2, Q.bounded) == False
assert ask(2**x, Q.bounded) == False
assert ask(2**x, Q.bounded, Assume(x, Q.bounded)) == True
assert ask(x**x, Q.bounded) == False
assert ask(Rational(1,2) ** x, Q.bounded) == True
assert ask(x ** Rational(1,2), Q.bounded) == False
# sign function
assert ask(sign(x), Q.bounded) == True
assert ask(sign(x), Q.bounded, Assume(x, Q.bounded, False)) == True
# exponential functions
assert ask(log(x), Q.bounded) == False
assert ask(log(x), Q.bounded, Assume(x, Q.bounded)) == True
assert ask(exp(x), Q.bounded) == False
assert ask(exp(x), Q.bounded, Assume(x, Q.bounded)) == True
assert ask(exp(2), Q.bounded) == True
# trigonometric functions
assert ask(sin(x), Q.bounded) == True
assert ask(sin(x), Q.bounded, Assume(x, Q.bounded, False)) == True
assert ask(cos(x), Q.bounded) == True
assert ask(cos(x), Q.bounded, Assume(x, Q.bounded, False)) == True
assert ask(2*sin(x), Q.bounded) == True
assert ask(sin(x)**2, Q.bounded) == True
assert ask(cos(x)**2, Q.bounded) == True
assert ask(cos(x) + sin(x), Q.bounded) == True
开发者ID:Aang,项目名称:sympy,代码行数:48,代码来源:test_query.py
示例15: test_catalan
def test_catalan():
n = Symbol('n', integer=True)
m = Symbol('n', integer=True, positive=True)
catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786]
for i, c in enumerate(catalans):
assert catalan(i) == c
assert catalan(n).rewrite(factorial).subs(n, i) == c
assert catalan(n).rewrite(Product).subs(n, i).doit() == c
assert catalan(x) == catalan(x)
assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1)
assert catalan(Rational(1, 2)).rewrite(gamma) == 8/(3*pi)
assert catalan(Rational(1, 2)).rewrite(factorial).rewrite(gamma) ==\
8 / (3 * pi)
assert catalan(3*x).rewrite(gamma) == 4**(
3*x)*gamma(3*x + Rational(1, 2))/(sqrt(pi)*gamma(3*x + 2))
assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1)
assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1)
* factorial(n))
assert isinstance(catalan(n).rewrite(Product), catalan)
assert isinstance(catalan(m).rewrite(Product), Product)
assert diff(catalan(x), x) == (polygamma(
0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4))*catalan(x)
assert catalan(x).evalf() == catalan(x)
c = catalan(S.Half).evalf()
assert str(c) == '0.848826363156775'
c = catalan(I).evalf(3)
assert str((re(c), im(c))) == '(0.398, -0.0209)'
开发者ID:A-turing-machine,项目名称:sympy,代码行数:32,代码来源:test_comb_numbers.py
示例16: mrv
def mrv(e, x):
"Returns a python set of most rapidly varying (mrv) subexpressions of 'e'"
assert isinstance(e, Basic)
if not e.has(x):
return set([])
elif e == x:
return set([x])
elif e.is_Mul:
a, b = e.as_two_terms()
return mrv_max(mrv(a,x), mrv(b,x), x)
elif e.is_Add:
a, b = e.as_two_terms()
return mrv_max(mrv(a,x), mrv(b,x), x)
elif e.is_Pow:
if e.exp.has(x):
return mrv(exp(e.exp * log(e.base)), x)
else:
return mrv(e.base, x)
elif e.func is log:
return mrv(e.args[0], x)
elif e.func is exp:
if limitinf(e.args[0], x) in [oo,-oo]:
return mrv_max(set([e]), mrv(e.args[0], x), x)
else:
return mrv(e.args[0], x)
elif e.is_Function:
if len(e.args) == 1:
return mrv(e.args[0], x)
#only functions of 1 argument currently implemented
raise NotImplementedError("Functions with more arguments: '%s'" % e)
raise NotImplementedError("Don't know how to calculate the mrv of '%s'" % e)
开发者ID:gnulinooks,项目名称:sympy,代码行数:31,代码来源:gruntz.py
示例17: mrv_leadterm
def mrv_leadterm(e, x):
"""Returns (c0, e0) for e."""
Omega = SubsSet()
if not e.has(x):
return (e, S.Zero)
if Omega == SubsSet():
Omega, exps = mrv(e, x)
if not Omega:
# e really does not depend on x after simplification
series = calculate_series(e, x)
c0, e0 = series.leadterm(x)
assert e0 == 0
return c0, e0
if x in Omega:
#move the whole omega up (exponentiate each term):
Omega_up = moveup2(Omega, x)
e_up = moveup([e], x)[0]
exps_up = moveup([exps], x)[0]
# NOTE: there is no need to move this down!
e = e_up
Omega = Omega_up
exps = exps_up
#
# The positive dummy, w, is used here so log(w*2) etc. will expand;
# a unique dummy is needed in this algorithm
#
# For limits of complex functions, the algorithm would have to be
# improved, or just find limits of Re and Im components separately.
#
w = Dummy("w", real=True, positive=True, bounded=True)
f, logw = rewrite(exps, Omega, x, w)
series = calculate_series(f, w, logx=logw)
series = series.subs(log(w), logw) # this should not be necessary
return series.leadterm(w)
开发者ID:fxkr,项目名称:sympy,代码行数:34,代码来源:gruntz.py
示例18: mrv_leadterm
def mrv_leadterm(e, x, Omega=[]):
"""Returns (c0, e0) for e."""
if not e.has(x):
return (e, S.Zero)
Omega = [t for t in Omega if subexp(e, t)]
if Omega == []:
Omega = mrv(e, x)
if not Omega:
# e really does not depend on x after simplification
series = calculate_series(e, x)
c0, e0 = series.leadterm(x)
assert e0 == 0
return c0, e0
if x in set(Omega):
# move the whole omega up (exponentiate each term):
Omega_up = set(moveup(Omega, x))
e_up = moveup([e], x)[0]
# calculate the lead term
mrv_leadterm_up = mrv_leadterm(e_up, x, Omega_up)
# move the result (c0, e0) down
return tuple(movedown(mrv_leadterm_up, x))
#
# The positive dummy, w, is used here so log(w*2) etc. will expand;
# a unique dummy is needed in this algorithm
#
# For limits of complex functions, the algorithm would have to be
# improved, or just find limits of Re and Im components separately.
#
w = Dummy("w", real=True, positive=True)
f, logw = rewrite(e, set(Omega), x, w)
series = calculate_series(f, w)
series = series.subs(log(w), logw)
return series.leadterm(w)
开发者ID:pyc111,项目名称:sympy,代码行数:33,代码来源:gruntz.py
示例19: compare
def compare(a, b, x):
"""Returns "<" if a<b, "=" for a == b, ">" for a>b"""
# log(exp(...)) must always be simplified here for termination
la, lb = log(a), log(b)
if isinstance(a, Basic) and a.func is exp:
la = a.args[0]
if isinstance(b, Basic) and b.func is exp:
lb = b.args[0]
c = limitinf(la/lb, x)
if c == 0:
return "<"
elif c.is_unbounded:
return ">"
else:
return "="
开发者ID:fxkr,项目名称:sympy,代码行数:16,代码来源:gruntz.py
示例20: test_trigintegrate_odd
def test_trigintegrate_odd():
assert trigintegrate(Rational(1), x) == x
assert trigintegrate(x, x) is None
assert trigintegrate(x**2, x) is None
assert trigintegrate(sin(x), x) == -cos(x)
assert trigintegrate(cos(x), x) == sin(x)
assert trigintegrate(sin(3*x), x) == -cos(3*x)/3
assert trigintegrate(cos(3*x), x) == sin(3*x)/3
y = Symbol('y')
assert trigintegrate(sin(y*x), x) == \
Piecewise((0, Eq(y, 0)), (-cos(y*x)/y, True))
assert trigintegrate(cos(y*x), x) == \
Piecewise((x, Eq(y, 0)), (sin(y*x)/y, True))
assert trigintegrate(sin(y*x)**2, x) == \
Piecewise((0, Eq(y, 0)), ((x*y/2 - sin(x*y)*cos(x*y)/2)/y, True))
assert trigintegrate(sin(y*x)*cos(y*x), x) == \
Piecewise((0, Eq(y, 0)), (sin(x*y)**2/(2*y), True))
assert trigintegrate(cos(y*x)**2, x) == \
Piecewise((x, Eq(y, 0)), ((x*y/2 + sin(x*y)*cos(x*y)/2)/y, True))
y = Symbol('y', positive=True)
# TODO: remove conds='none' below. For this to work we would have to rule
# out (e.g. by trying solve) the condition y = 0, incompatible with
# y.is_positive being True.
assert trigintegrate(sin(y*x), x, conds='none') == -cos(y*x)/y
assert trigintegrate(cos(y*x), x, conds='none') == sin(y*x)/y
assert trigintegrate(sin(x)*cos(x), x) == sin(x)**2/2
assert trigintegrate(sin(x)*cos(x)**2, x) == -cos(x)**3/3
assert trigintegrate(sin(x)**2*cos(x), x) == sin(x)**3/3
# check if it selects right function to substitute,
# so the result is kept simple
assert trigintegrate(sin(x)**7 * cos(x), x) == sin(x)**8/8
assert trigintegrate(sin(x) * cos(x)**7, x) == -cos(x)**8/8
assert trigintegrate(sin(x)**7 * cos(x)**3, x) == \
-sin(x)**10/10 + sin(x)**8/8
assert trigintegrate(sin(x)**3 * cos(x)**7, x) == \
cos(x)**10/10 - cos(x)**8/8
# both n, m are odd and -ve, and not necessarily equal
assert trigintegrate(sin(x)**-1*cos(x)**-1, x) == \
-log(sin(x)**2 - 1)/2 + log(sin(x))
开发者ID:certik,项目名称:sympy,代码行数:47,代码来源:test_trigonometry.py
注:本文中的sympy.functions.log函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论