• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python functions.im函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.functions.im函数的典型用法代码示例。如果您正苦于以下问题:Python im函数的具体用法?Python im怎么用?Python im使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了im函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: solve_eqn

 def solve_eqn(self):
     q, betasq, ml, md, m0 = sympy.symbols('q,betasq,ml,md,m0')
     nbetasq = self.model_betasq()
     eqn1, eqn2, eqn3, eqn4, eqn5 = self.get_eqns()
     sols = sympy.solve([eqn1.subs(betasq, nbetasq), 
                         eqn2.subs(betasq, nbetasq), 
                         eqn3.subs(betasq, nbetasq),
                         eqn4.subs(betasq, nbetasq)],
                        [q, ml, md, m0])
     isAllReal = lambda item: im(item[0])==0 and im(item[1])==0 and im(item[2])==0 and im(item[3])==0
     sols = filter(isAllReal, sols)
     isValid = lambda item: item[0]>0 and item[1]>=0 and item[2]>=0 and item[3]>0
     sols = filter(isValid, sols)
     return sols
开发者ID:stephenhky,项目名称:helimagnet,代码行数:14,代码来源:helicalphase_sympy.py


示例2: roots_binomial

def roots_binomial(f):
    """Returns a list of roots of a binomial polynomial."""
    n = f.degree()

    a, b = f.nth(n), f.nth(0)
    alpha = (-cancel(b/a))**Rational(1, n)

    if alpha.is_number:
        alpha = alpha.expand(complex=True)

    roots, I = [], S.ImaginaryUnit

    for k in xrange(n):
        zeta = exp(2*k*S.Pi*I/n).expand(complex=True)
        roots.append((alpha*zeta).expand(power_base=False))

    if all([ r.is_number for r in roots ]):
        reals, complexes = [], []

        for root in roots:
            if root.is_real:
                reals.append(root)
            else:
                complexes.append(root)

        roots = sorted(reals) + sorted(complexes, key=lambda r: (re(r), -im(r)))

    return roots
开发者ID:robotment,项目名称:sympy,代码行数:28,代码来源:polyroots.py


示例3: reduce_poly_inequalities

def reduce_poly_inequalities(exprs, gen, assume=True, relational=True):
    """Reduce a system of polynomial inequalities with rational coefficients. """
    exact = True
    polys = []

    for _exprs in exprs:
        _polys = []

        for expr in _exprs:
            if isinstance(expr, tuple):
                expr, rel = expr
            else:
                if expr.is_Relational:
                    expr, rel = expr.lhs - expr.rhs, expr.rel_op
                else:
                    expr, rel = expr, '=='

            poly = Poly(expr, gen)

            if not poly.get_domain().is_Exact:
                poly, exact = poly.to_exact(), False

            domain = poly.get_domain()

            if not (domain.is_ZZ or domain.is_QQ):
                raise NotImplementedError("inequality solving is not supported over %s" % domain)

            _polys.append((poly, rel))

        polys.append(_polys)

    solution = solve_poly_inequalities(polys)

    if isinstance(solution, Union):
        intervals = list(solution.args)
    elif isinstance(solution, Interval):
        intervals = [solution]
    else:
        intervals = []

    if not exact:
        intervals = map(interval_evalf, intervals)

    if not relational:
        return intervals

    real = ask(gen, 'real', assume)

    def relationalize(gen):
        return Or(*[ i.as_relational(gen) for i in intervals ])

    if not real:
        result = And(relationalize(re(gen)), Eq(im(gen), 0))
    else:
        result = relationalize(gen)

    return result
开发者ID:addisonc,项目名称:sympy,代码行数:57,代码来源:inequalities.py


示例4: test_even

def test_even():
    x, y, z, t = symbols("x,y,z,t")
    assert ask(x, Q.even) == None
    assert ask(x, Q.even, Assume(x, Q.integer)) == None
    assert ask(x, Q.even, Assume(x, Q.integer, False)) == False
    assert ask(x, Q.even, Assume(x, Q.rational)) == None
    assert ask(x, Q.even, Assume(x, Q.positive)) == None

    assert ask(2 * x, Q.even) == None
    assert ask(2 * x, Q.even, Assume(x, Q.integer)) == True
    assert ask(2 * x, Q.even, Assume(x, Q.even)) == True
    assert ask(2 * x, Q.even, Assume(x, Q.irrational)) == False
    assert ask(2 * x, Q.even, Assume(x, Q.odd)) == True
    assert ask(2 * x, Q.even, Assume(x, Q.integer, False)) == None
    assert ask(3 * x, Q.even, Assume(x, Q.integer)) == None
    assert ask(3 * x, Q.even, Assume(x, Q.even)) == True
    assert ask(3 * x, Q.even, Assume(x, Q.odd)) == False

    assert ask(x + 1, Q.even, Assume(x, Q.odd)) == True
    assert ask(x + 1, Q.even, Assume(x, Q.even)) == False
    assert ask(x + 2, Q.even, Assume(x, Q.odd)) == False
    assert ask(x + 2, Q.even, Assume(x, Q.even)) == True
    assert ask(7 - x, Q.even, Assume(x, Q.odd)) == True
    assert ask(7 + x, Q.even, Assume(x, Q.odd)) == True
    assert ask(x + y, Q.even, Assume(x, Q.odd) & Assume(y, Q.odd)) == True
    assert ask(x + y, Q.even, Assume(x, Q.odd) & Assume(y, Q.even)) == False
    assert ask(x + y, Q.even, Assume(x, Q.even) & Assume(y, Q.even)) == True

    assert ask(2 * x + 1, Q.even, Assume(x, Q.integer)) == False
    assert ask(2 * x * y, Q.even, Assume(x, Q.rational) & Assume(x, Q.rational)) == None
    assert ask(2 * x * y, Q.even, Assume(x, Q.irrational) & Assume(x, Q.irrational)) == None

    assert ask(x + y + z, Q.even, Assume(x, Q.odd) & Assume(y, Q.odd) & Assume(z, Q.even)) == True
    assert (
        ask(x + y + z + t, Q.even, Assume(x, Q.odd) & Assume(y, Q.odd) & Assume(z, Q.even) & Assume(t, Q.integer))
        == None
    )

    assert ask(Abs(x), Q.even, Assume(x, Q.even)) == True
    assert ask(Abs(x), Q.even, Assume(x, Q.even, False)) == None
    assert ask(re(x), Q.even, Assume(x, Q.even)) == True
    assert ask(re(x), Q.even, Assume(x, Q.even, False)) == None
    assert ask(im(x), Q.even, Assume(x, Q.even)) == True
    assert ask(im(x), Q.even, Assume(x, Q.real)) == True
开发者ID:sympy,项目名称:sympy,代码行数:44,代码来源:test_query.py


示例5: test_Function

def test_Function():
    assert mcode(sin(x) ** cos(x)) == "sin(x).^cos(x)"
    assert mcode(abs(x)) == "abs(x)"
    assert mcode(ceiling(x)) == "ceil(x)"
    assert mcode(arg(x)) == "angle(x)"
    assert mcode(im(x)) == "imag(x)"
    assert mcode(re(x)) == "real(x)"
    assert mcode(Max(x, y) + Min(x, y)) == "max(x, y) + min(x, y)"
    assert mcode(Max(x, y, z)) == "max(x, max(y, z))"
    assert mcode(Min(x, y, z)) == "min(x, min(y, z))"
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:10,代码来源:test_octave.py


示例6: test_even

def test_even():
    x, y, z, t = symbols('x,y,z,t')
    assert ask(Q.even(x)) == None
    assert ask(Q.even(x), Q.integer(x)) == None
    assert ask(Q.even(x), ~Q.integer(x)) == False
    assert ask(Q.even(x), Q.rational(x)) == None
    assert ask(Q.even(x), Q.positive(x)) == None

    assert ask(Q.even(2*x)) == None
    assert ask(Q.even(2*x), Q.integer(x)) == True
    assert ask(Q.even(2*x), Q.even(x)) == True
    assert ask(Q.even(2*x), Q.irrational(x)) == False
    assert ask(Q.even(2*x), Q.odd(x)) == True
    assert ask(Q.even(2*x), ~Q.integer(x)) == None
    assert ask(Q.even(3*x), Q.integer(x)) == None
    assert ask(Q.even(3*x), Q.even(x)) == True
    assert ask(Q.even(3*x), Q.odd(x)) == False

    assert ask(Q.even(x+1), Q.odd(x)) == True
    assert ask(Q.even(x+1), Q.even(x)) == False
    assert ask(Q.even(x+2), Q.odd(x)) == False
    assert ask(Q.even(x+2), Q.even(x)) == True
    assert ask(Q.even(7-x), Q.odd(x)) == True
    assert ask(Q.even(7+x), Q.odd(x)) == True
    assert ask(Q.even(x+y), Q.odd(x) & Q.odd(y)) == True
    assert ask(Q.even(x+y), Q.odd(x) & Q.even(y)) == False
    assert ask(Q.even(x+y), Q.even(x) & Q.even(y)) == True

    assert ask(Q.even(2*x + 1), Q.integer(x)) == False
    assert ask(Q.even(2*x*y), Q.rational(x) & Q.rational(x)) == None
    assert ask(Q.even(2*x*y), Q.irrational(x) & Q.irrational(x)) == None

    assert ask(Q.even(x+y+z), Q.odd(x) & Q.odd(y) & Q.even(z)) == True
    assert ask(Q.even(x+y+z+t),
               Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) == None

    assert ask(Q.even(Abs(x)), Q.even(x)) == True
    assert ask(Q.even(Abs(x)), ~Q.even(x)) == None
    assert ask(Q.even(re(x)), Q.even(x)) == True
    assert ask(Q.even(re(x)), ~Q.even(x)) == None
    assert ask(Q.even(im(x)), Q.even(x)) == True
    assert ask(Q.even(im(x)), Q.real(x)) == True
开发者ID:lazovich,项目名称:sympy,代码行数:42,代码来源:test_query.py


示例7: change_matrix_type

def change_matrix_type(matrix, num_to_sym=1):
	"""
	Change a matrix or array from numpy to sympy and a sympy matrix
	to numpy matrix.
	"""
	if num_to_sym:
		n = len(matrix)
		new_matrix = sp.Matrix([[matrix[i,j] for j in range(n)] for i in range(n)])
	else:
		n = int(sqrt(len(matrix)))
		new_matrix = np.matrix([[complex(fun.re(matrix[i,j]), fun.im(matrix[i,j])) for j in range(n)] for i in range(n)])	
	return new_matrix
开发者ID:maiwol,项目名称:Exact-Simulator,代码行数:12,代码来源:Approx_Errors.py


示例8: reduce_poly_inequalities

def reduce_poly_inequalities(exprs, gen, assume=True, relational=True):
    """Reduce a system of polynomial inequalities with rational coefficients. """
    exact = True
    polys = []

    for _exprs in exprs:
        _polys = []

        for expr in _exprs:
            if isinstance(expr, tuple):
                expr, rel = expr
            else:
                if expr.is_Relational:
                    expr, rel = expr.lhs - expr.rhs, expr.rel_op
                else:
                    expr, rel = expr, "=="

            poly = Poly(expr, gen)

            if not poly.get_domain().is_Exact:
                poly, exact = poly.to_exact(), False

            domain = poly.get_domain()

            if not (domain.is_ZZ or domain.is_QQ):
                raise NotImplementedError("inequality solving is not supported over %s" % domain)

            _polys.append((poly, rel))

        polys.append(_polys)

    solution = solve_poly_inequalities(polys)

    if not exact:
        solution = solution.evalf()

    if not relational:
        return solution

    real = ask(Q.real(gen), assumptions=assume)

    if not real:
        result = And(solution.as_relational(re(gen)), Eq(im(gen), 0))
    else:
        result = solution.as_relational(gen)

    return result
开发者ID:hitej,项目名称:meta-core,代码行数:47,代码来源:inequalities.py


示例9: test_real

def test_real():
    x, y = symbols('x y')
    assert ask(x, Q.real) == None
    assert ask(x, Q.real, Assume(x, Q.real)) == True
    assert ask(x, Q.real, Assume(x, Q.nonzero)) == True
    assert ask(x, Q.real, Assume(x, Q.positive)) == True
    assert ask(x, Q.real, Assume(x, Q.negative)) == True
    assert ask(x, Q.real, Assume(x, Q.integer)) == True
    assert ask(x, Q.real, Assume(x, Q.even)) == True
    assert ask(x, Q.real, Assume(x, Q.prime)) == True

    assert ask(x/sqrt(2), Q.real, Assume(x, Q.real)) == True
    assert ask(x/sqrt(-2), Q.real, Assume(x, Q.real)) == False

    I = S.ImaginaryUnit
    assert ask(x+1, Q.real, Assume(x, Q.real)) == True
    assert ask(x+I, Q.real, Assume(x, Q.real)) == False
    assert ask(x+I, Q.real, Assume(x, Q.complex)) == None

    assert ask(2*x, Q.real, Assume(x, Q.real)) == True
    assert ask(I*x, Q.real, Assume(x, Q.real)) == False
    assert ask(I*x, Q.real, Assume(x, Q.imaginary)) == True
    assert ask(I*x, Q.real, Assume(x, Q.complex)) == None

    assert ask(x**2, Q.real, Assume(x, Q.real)) == True
    assert ask(sqrt(x), Q.real, Assume(x, Q.negative)) == False
    assert ask(x**y, Q.real, Assume(x, Q.real) & Assume(y, Q.integer)) == True
    assert ask(x**y, Q.real, Assume(x, Q.real) & Assume(y, Q.real)) == None
    assert ask(x**y, Q.real, Assume(x, Q.positive) & \
                     Assume(y, Q.real)) == True

    # trigonometric functions
    assert ask(sin(x), Q.real) == None
    assert ask(cos(x), Q.real) == None
    assert ask(sin(x), Q.real, Assume(x, Q.real)) == True
    assert ask(cos(x), Q.real, Assume(x, Q.real)) == True

    # exponential function
    assert ask(exp(x), Q.real) == None
    assert ask(exp(x), Q.real, Assume(x, Q.real)) == True
    assert ask(x + exp(x), Q.real, Assume(x, Q.real)) == True

    # Q.complexes
    assert ask(re(x), Q.real) == True
    assert ask(im(x), Q.real) == True
开发者ID:Aang,项目名称:sympy,代码行数:45,代码来源:test_query.py


示例10: test_real

def test_real():
    x, y = symbols('x,y')
    assert ask(Q.real(x)) == None
    assert ask(Q.real(x), Q.real(x)) == True
    assert ask(Q.real(x), Q.nonzero(x)) == True
    assert ask(Q.real(x), Q.positive(x)) == True
    assert ask(Q.real(x), Q.negative(x)) == True
    assert ask(Q.real(x), Q.integer(x)) == True
    assert ask(Q.real(x), Q.even(x)) == True
    assert ask(Q.real(x), Q.prime(x)) == True

    assert ask(Q.real(x/sqrt(2)), Q.real(x)) == True
    assert ask(Q.real(x/sqrt(-2)), Q.real(x)) == False

    I = S.ImaginaryUnit
    assert ask(Q.real(x+1), Q.real(x)) == True
    assert ask(Q.real(x+I), Q.real(x)) == False
    assert ask(Q.real(x+I), Q.complex(x)) == None

    assert ask(Q.real(2*x), Q.real(x)) == True
    assert ask(Q.real(I*x), Q.real(x)) == False
    assert ask(Q.real(I*x), Q.imaginary(x)) == True
    assert ask(Q.real(I*x), Q.complex(x)) == None

    assert ask(Q.real(x**2), Q.real(x)) == True
    assert ask(Q.real(sqrt(x)), Q.negative(x)) == False
    assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) == True
    assert ask(Q.real(x**y), Q.real(x) & Q.real(y)) == None
    assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) == True

    # trigonometric functions
    assert ask(Q.real(sin(x))) == None
    assert ask(Q.real(cos(x))) == None
    assert ask(Q.real(sin(x)), Q.real(x)) == True
    assert ask(Q.real(cos(x)), Q.real(x)) == True

    # exponential function
    assert ask(Q.real(exp(x))) == None
    assert ask(Q.real(exp(x)), Q.real(x)) == True
    assert ask(Q.real(x + exp(x)), Q.real(x)) == True

    # Q.complexes
    assert ask(Q.real(re(x))) == True
    assert ask(Q.real(im(x))) == True
开发者ID:lazovich,项目名称:sympy,代码行数:44,代码来源:test_query.py


示例11: test_Function_change_name

def test_Function_change_name():
    assert mcode(abs(x)) == "abs(x)"
    assert mcode(ceiling(x)) == "ceil(x)"
    assert mcode(arg(x)) == "angle(x)"
    assert mcode(im(x)) == "imag(x)"
    assert mcode(re(x)) == "real(x)"
    assert mcode(conjugate(x)) == "conj(x)"
    assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)"
    assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)"
    assert mcode(laguerre(x, y)) == "laguerreL(x, y)"
    assert mcode(Chi(x)) == "coshint(x)"
    assert mcode(Shi(x)) ==  "sinhint(x)"
    assert mcode(Ci(x)) == "cosint(x)"
    assert mcode(Si(x)) ==  "sinint(x)"
    assert mcode(li(x)) ==  "logint(x)"
    assert mcode(loggamma(x)) ==  "gammaln(x)"
    assert mcode(polygamma(x, y)) == "psi(x, y)"
    assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)"
    assert mcode(DiracDelta(x)) == "dirac(x)"
    assert mcode(DiracDelta(x, 3)) == "dirac(3, x)"
    assert mcode(Heaviside(x)) == "heaviside(x)"
    assert mcode(Heaviside(x, y)) == "heaviside(x, y)"
开发者ID:Lenqth,项目名称:sympy,代码行数:22,代码来源:test_octave.py


示例12: roots_quintic

def roots_quintic(f):
    """
    Calculate exact roots of a solvable quintic
    """
    result = []
    coeff_5, coeff_4, p, q, r, s = f.all_coeffs()

    # Eqn must be of the form x^5 + px^3 + qx^2 + rx + s
    if coeff_4:
        return result

    if coeff_5 != 1:
        l = [p/coeff_5, q/coeff_5, r/coeff_5, s/coeff_5]
        if not all(coeff.is_Rational for coeff in l):
            return result
        f = Poly(f/coeff_5)
    quintic = PolyQuintic(f)

    # Eqn standardized. Algo for solving starts here
    if not f.is_irreducible:
        return result

    f20 = quintic.f20
    # Check if f20 has linear factors over domain Z
    if f20.is_irreducible:
        return result

    # Now, we know that f is solvable
    for _factor in f20.factor_list()[1]:
        if _factor[0].is_linear:
            theta = _factor[0].root(0)
            break
    d = discriminant(f)
    delta = sqrt(d)
    # zeta = a fifth root of unity
    zeta1, zeta2, zeta3, zeta4 = quintic.zeta
    T = quintic.T(theta, d)
    tol = S(1e-10)
    alpha = T[1] + T[2]*delta
    alpha_bar = T[1] - T[2]*delta
    beta = T[3] + T[4]*delta
    beta_bar = T[3] - T[4]*delta

    disc = alpha**2 - 4*beta
    disc_bar = alpha_bar**2 - 4*beta_bar

    l0 = quintic.l0(theta)

    l1 = _quintic_simplify((-alpha + sqrt(disc)) / S(2))
    l4 = _quintic_simplify((-alpha - sqrt(disc)) / S(2))

    l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / S(2))
    l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / S(2))

    order = quintic.order(theta, d)
    test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) )
    # Comparing floats
    if not comp(test, 0, tol):
        l2, l3 = l3, l2

    # Now we have correct order of l's
    R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4
    R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4
    R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4
    R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4

    Res = [None, [None]*5, [None]*5, [None]*5, [None]*5]
    Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5]
    sol = Symbol('sol')

    # Simplifying improves performance a lot for exact expressions
    R1 = _quintic_simplify(R1)
    R2 = _quintic_simplify(R2)
    R3 = _quintic_simplify(R3)
    R4 = _quintic_simplify(R4)

    # Solve imported here. Causing problems if imported as 'solve'
    # and hence the changed name
    from sympy.solvers.solvers import solve as _solve
    a, b = symbols('a b', cls=Dummy)
    _sol = _solve( sol**5 - a - I*b, sol)
    for i in range(5):
        _sol[i] = factor(_sol[i])
    R1 = R1.as_real_imag()
    R2 = R2.as_real_imag()
    R3 = R3.as_real_imag()
    R4 = R4.as_real_imag()

    for i, currentroot in enumerate(_sol):
        Res[1][i] = _quintic_simplify(currentroot.subs({ a: R1[0], b: R1[1] }))
        Res[2][i] = _quintic_simplify(currentroot.subs({ a: R2[0], b: R2[1] }))
        Res[3][i] = _quintic_simplify(currentroot.subs({ a: R3[0], b: R3[1] }))
        Res[4][i] = _quintic_simplify(currentroot.subs({ a: R4[0], b: R4[1] }))

    for i in range(1, 5):
        for j in range(5):
            Res_n[i][j] = Res[i][j].n()
            Res[i][j] = _quintic_simplify(Res[i][j])
    r1 = Res[1][0]
    r1_n = Res_n[1][0]
#.........这里部分代码省略.........
开发者ID:bjodah,项目名称:sympy,代码行数:101,代码来源:polyroots.py


示例13: reduce_rational_inequalities

def reduce_rational_inequalities(exprs, gen, assume=True, relational=True):
    """Reduce a system of rational inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import Poly, Symbol
    >>> from sympy.solvers.inequalities import reduce_rational_inequalities

    >>> x = Symbol('x', real=True)

    >>> reduce_rational_inequalities([[x**2 <= 0]], x)
    x == 0

    >>> reduce_rational_inequalities([[x + 2 > 0]], x)
    And(-2 < x, x < oo)
    >>> reduce_rational_inequalities([[(x + 2, ">")]], x)
    And(-2 < x, x < oo)
    >>> reduce_rational_inequalities([[x + 2]], x)
    x == -2
    """
    exact = True
    eqs = []

    for _exprs in exprs:
        _eqs = []

        for expr in _exprs:
            if isinstance(expr, tuple):
                expr, rel = expr
            else:
                if expr.is_Relational:
                    expr, rel = expr.lhs - expr.rhs, expr.rel_op
                else:
                    expr, rel = expr, '=='

            try:
                (numer, denom), opt = parallel_poly_from_expr(
                    expr.together().as_numer_denom(), gen)
            except PolynomialError:
                raise PolynomialError("only polynomials and "
                    "rational functions are supported in this context")

            if not opt.domain.is_Exact:
                numer, denom, exact = numer.to_exact(), denom.to_exact(), False

            domain = opt.domain.get_exact()

            if not (domain.is_ZZ or domain.is_QQ):
                raise NotImplementedError(
                    "inequality solving is not supported over %s" % opt.domain)

            _eqs.append(((numer, denom), rel))

        eqs.append(_eqs)

    solution = solve_rational_inequalities(eqs)

    if not exact:
        solution = solution.evalf()

    if not relational:
        return solution

    real = ask(Q.real(gen), assumptions=assume)

    if not real:
        result = And(solution.as_relational(re(gen)), Eq(im(gen), 0))
    else:
        result = solution.as_relational(gen)

    return result
开发者ID:aiwku1277,项目名称:sympy,代码行数:72,代码来源:inequalities.py


示例14: test_complex

def test_complex():
    x, y = symbols('xy')
    assert ask(x, Q.complex) == None
    assert ask(x, Q.complex, Assume(x, Q.complex)) == True
    assert ask(x, Q.complex, Assume(y, Q.complex)) == None
    assert ask(x, Q.complex, Assume(x, Q.complex, False)) == False
    assert ask(x, Q.complex, Assume(x, Q.real)) == True
    assert ask(x, Q.complex, Assume(x, Q.real, False)) == None
    assert ask(x, Q.complex, Assume(x, Q.rational)) == True
    assert ask(x, Q.complex, Assume(x, Q.irrational)) == True
    assert ask(x, Q.complex, Assume(x, Q.positive)) == True
    assert ask(x, Q.complex, Assume(x, Q.imaginary)) == True

    # a+b
    assert ask(x+1, Q.complex, Assume(x, Q.complex)) == True
    assert ask(x+1, Q.complex, Assume(x, Q.real)) == True
    assert ask(x+1, Q.complex, Assume(x, Q.rational)) == True
    assert ask(x+1, Q.complex, Assume(x, Q.irrational)) == True
    assert ask(x+1, Q.complex, Assume(x, Q.imaginary)) == True
    assert ask(x+1, Q.complex, Assume(x, Q.integer))  == True
    assert ask(x+1, Q.complex, Assume(x, Q.even))  == True
    assert ask(x+1, Q.complex, Assume(x, Q.odd))  == True
    assert ask(x+y, Q.complex, Assume(x, Q.complex) & Assume(y, Q.complex)) == True
    assert ask(x+y, Q.complex, Assume(x, Q.real) & Assume(y, Q.imaginary)) == True

    # a*x +b
    assert ask(2*x+1, Q.complex, Assume(x, Q.complex)) == True
    assert ask(2*x+1, Q.complex, Assume(x, Q.real)) == True
    assert ask(2*x+1, Q.complex, Assume(x, Q.positive)) == True
    assert ask(2*x+1, Q.complex, Assume(x, Q.rational)) == True
    assert ask(2*x+1, Q.complex, Assume(x, Q.irrational)) == True
    assert ask(2*x+1, Q.complex, Assume(x, Q.imaginary)) == True
    assert ask(2*x+1, Q.complex, Assume(x, Q.integer))  == True
    assert ask(2*x+1, Q.complex, Assume(x, Q.even))  == True
    assert ask(2*x+1, Q.complex, Assume(x, Q.odd))  == True

    # x**2
    assert ask(x**2, Q.complex, Assume(x, Q.complex)) == True
    assert ask(x**2, Q.complex, Assume(x, Q.real)) == True
    assert ask(x**2, Q.complex, Assume(x, Q.positive)) == True
    assert ask(x**2, Q.complex, Assume(x, Q.rational)) == True
    assert ask(x**2, Q.complex, Assume(x, Q.irrational)) == True
    assert ask(x**2, Q.complex, Assume(x, Q.imaginary)) == True
    assert ask(x**2, Q.complex, Assume(x, Q.integer))  == True
    assert ask(x**2, Q.complex, Assume(x, Q.even))  == True
    assert ask(x**2, Q.complex, Assume(x, Q.odd))  == True

    # 2**x
    assert ask(2**x, Q.complex, Assume(x, Q.complex)) == True
    assert ask(2**x, Q.complex, Assume(x, Q.real)) == True
    assert ask(2**x, Q.complex, Assume(x, Q.positive)) == True
    assert ask(2**x, Q.complex, Assume(x, Q.rational)) == True
    assert ask(2**x, Q.complex, Assume(x, Q.irrational)) == True
    assert ask(2**x, Q.complex, Assume(x, Q.imaginary)) == True
    assert ask(2**x, Q.complex, Assume(x, Q.integer))  == True
    assert ask(2**x, Q.complex, Assume(x, Q.even))  == True
    assert ask(2**x, Q.complex, Assume(x, Q.odd))  == True
    assert ask(x**y, Q.complex, Assume(x, Q.complex) & \
                     Assume(y, Q.complex)) == True

    # trigonometric expressions
    assert ask(sin(x), Q.complex) == True
    assert ask(sin(2*x + 1), Q.complex) == True
    assert ask(cos(x), Q.complex) == True
    assert ask(cos(2*x+1), Q.complex) == True

    # exponential
    assert ask(exp(x), Q.complex) == True
    assert ask(exp(x), Q.complex) == True

    # Q.complexes
    assert ask(Abs(x), Q.complex) == True
    assert ask(re(x),  Q.complex) == True
    assert ask(im(x),  Q.complex) == True
开发者ID:Aang,项目名称:sympy,代码行数:74,代码来源:test_query.py


示例15: test_complex

def test_complex():
    x, y = symbols('x,y')
    assert ask(Q.complex(x)) == None
    assert ask(Q.complex(x), Q.complex(x)) == True
    assert ask(Q.complex(x), Q.complex(y)) == None
    assert ask(Q.complex(x), ~Q.complex(x)) == False
    assert ask(Q.complex(x), Q.real(x)) == True
    assert ask(Q.complex(x), ~Q.real(x)) == None
    assert ask(Q.complex(x), Q.rational(x)) == True
    assert ask(Q.complex(x), Q.irrational(x)) == True
    assert ask(Q.complex(x), Q.positive(x)) == True
    assert ask(Q.complex(x), Q.imaginary(x)) == True

    # a+b
    assert ask(Q.complex(x+1), Q.complex(x)) == True
    assert ask(Q.complex(x+1), Q.real(x)) == True
    assert ask(Q.complex(x+1), Q.rational(x)) == True
    assert ask(Q.complex(x+1), Q.irrational(x)) == True
    assert ask(Q.complex(x+1), Q.imaginary(x)) == True
    assert ask(Q.complex(x+1), Q.integer(x))  == True
    assert ask(Q.complex(x+1), Q.even(x))  == True
    assert ask(Q.complex(x+1), Q.odd(x))  == True
    assert ask(Q.complex(x+y), Q.complex(x) & Q.complex(y)) == True
    assert ask(Q.complex(x+y), Q.real(x) & Q.imaginary(y)) == True

    # a*x +b
    assert ask(Q.complex(2*x+1), Q.complex(x)) == True
    assert ask(Q.complex(2*x+1), Q.real(x)) == True
    assert ask(Q.complex(2*x+1), Q.positive(x)) == True
    assert ask(Q.complex(2*x+1), Q.rational(x)) == True
    assert ask(Q.complex(2*x+1), Q.irrational(x)) == True
    assert ask(Q.complex(2*x+1), Q.imaginary(x)) == True
    assert ask(Q.complex(2*x+1), Q.integer(x))  == True
    assert ask(Q.complex(2*x+1), Q.even(x))  == True
    assert ask(Q.complex(2*x+1), Q.odd(x))  == True

    # x**2
    assert ask(Q.complex(x**2), Q.complex(x)) == True
    assert ask(Q.complex(x**2), Q.real(x)) == True
    assert ask(Q.complex(x**2), Q.positive(x)) == True
    assert ask(Q.complex(x**2), Q.rational(x)) == True
    assert ask(Q.complex(x**2), Q.irrational(x)) == True
    assert ask(Q.complex(x**2), Q.imaginary(x)) == True
    assert ask(Q.complex(x**2), Q.integer(x))  == True
    assert ask(Q.complex(x**2), Q.even(x))  == True
    assert ask(Q.complex(x**2), Q.odd(x))  == True

    # 2**x
    assert ask(Q.complex(2**x), Q.complex(x)) == True
    assert ask(Q.complex(2**x), Q.real(x)) == True
    assert ask(Q.complex(2**x), Q.positive(x)) == True
    assert ask(Q.complex(2**x), Q.rational(x)) == True
    assert ask(Q.complex(2**x), Q.irrational(x)) == True
    assert ask(Q.complex(2**x), Q.imaginary(x)) == True
    assert ask(Q.complex(2**x), Q.integer(x))  == True
    assert ask(Q.complex(2**x), Q.even(x))  == True
    assert ask(Q.complex(2**x), Q.odd(x))  == True
    assert ask(Q.complex(x**y), Q.complex(x) & Q.complex(y)) == True

    # trigonometric expressions
    assert ask(Q.complex(sin(x))) == True
    assert ask(Q.complex(sin(2*x + 1))) == True
    assert ask(Q.complex(cos(x))) == True
    assert ask(Q.complex(cos(2*x+1))) == True

    # exponential
    assert ask(Q.complex(exp(x))) == True
    assert ask(Q.complex(exp(x))) == True

    # Q.complexes
    assert ask(Q.complex(Abs(x))) == True
    assert ask(Q.complex(re(x))) == True
    assert ask(Q.complex(im(x))) == True
开发者ID:lazovich,项目名称:sympy,代码行数:73,代码来源:test_query.py



注:本文中的sympy.functions.im函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python functions.log函数代码示例发布时间:2022-05-27
下一篇:
Python functions.hyper函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap