• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python gutenberg.raw函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nltk.corpus.gutenberg.raw函数的典型用法代码示例。如果您正苦于以下问题:Python raw函数的具体用法?Python raw怎么用?Python raw使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了raw函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_austen

def test_austen():
  from nltk.data import load
  from nltk.corpus import gutenberg as g
  stok = load('tokenizers/punkt/english.pickle')
  train = [[w for w in tokenize(preprocess(sent))] for sent in stok.tokenize(g.raw('austen-emma.txt'))]
  test1 = [[w for w in tokenize(preprocess(sent))] for sent in stok.tokenize(g.raw('austen-sense.txt'))]
  test2 = [[w for w in tokenize(preprocess(sent))] for sent in stok.tokenize(g.raw('austen-persuasion.txt'))]

  model1 = AdditiveSmoothing(n=2)
  model1.generate_model(train)
  print 'cross entropy additive smoothing:'
  print 'emma to sense&sensibility: %f0.8' %cross_entropy(model1, test1)
  print 'emma to persuasion: %f0.8' %cross_entropy(model1, test2)
  model2 = KnesserNey(n=2)
  model2.generate_model(train)
  print 'cross entropy knesser-ney smoothing:'
  print 'emma to sense&sensibility: %f0.8' %cross_entropy(model2, test1)
  print 'emma to persuasion: %f0.8' %cross_entropy(model2, test2)
  model3 = SimpleGoodTuring(n=2)
  model3.generate_model(train)
  print 'cross entropy simple good-turing smoothing:'
  print 'emma to sense&sensibility: %f0.8' %cross_entropy(model3, test1)
  print 'emma to persuasion: %f0.8' %cross_entropy(model3, test2)

  model4 = KatzSmoothing(n=2)
  model4.generate_model(train)
  print 'cross entropy katz smoothing:'
  print 'emma to sense&sensibility: %f0.8' %cross_entropy(model4, test1)
  print 'emma to persuasion: %f0.8' %cross_entropy(model4, test2)
开发者ID:JoeDumoulin,项目名称:nlp_working,代码行数:29,代码来源:calc_score.py


示例2: test

def test():

    from nltk.corpus import gutenberg
    emma = gutenberg.raw('austen-emma.txt')
    print len(emma)
    ex = createexercise(emma, pos='v', last_index=False, fast=True)
    print len(ex)
开发者ID:SuzanaK,项目名称:wordgap,代码行数:7,代码来源:wordex.py


示例3: load_moby_dick_analysis

def load_moby_dick_analysis():
    
    tokens = get_moby_dick_tokens()
    text = gutenberg.raw('melville-moby_dick.txt')
    try:
        moby_dick_doc = Document(
            url='gutenberg',
            name='moby dick',
            text=text,
            month='Jan',
            year='1851'
            )
        odm_session.flush()
    except DuplicateKeyError:
        moby_dick_doc = Document.query.get(name='moby dick')

    for sum_threshold in sum_thresholds:
        log.info("Trying analysis for threshold = %s" % sum_threshold)
        analysis = get_optimal_window_size(tokens, window_sizes, 20, sum_threshold=sum_threshold)[1]
        anal_dict = analysis.encode()
        window_size = anal_dict['window_size']

        log.debug("Best result = %s" % window_size)
        InformationValueResult(
            window_size = window_size,
            threshold = sum_threshold,
            document = moby_dick_doc,
            iv_words = anal_dict['top_words'],
            max_iv = anal_dict['max_iv'],
            sum_iv = anal_dict['sum_iv']
        )
        odm_session.flush()
开发者ID:finiteautomata,项目名称:leninanalysis,代码行数:32,代码来源:moby_dick.py


示例4: exercise_gutenberg

def exercise_gutenberg():
    # 打印古腾堡项目的文件列表
    print gutenberg.fileids()

    # 挑选一个文本: 简-奥斯丁的《爱玛》
    emma = gutenberg.words("austen-emma.txt")

    # 查看书的长度
    print len(emma)

    # 导入文本
    emma_text = nltk.Text(emma)
    emma_text.concordance("surprize")

    for file_id in gutenberg.fileids():
        chars_list = gutenberg.raw(file_id)
        words_list = gutenberg.words(file_id)
        sents_list = gutenberg.sents(file_id)

        # 统计文件的总字符数
        num_chars = len(chars_list)
        # 统计文件的总单词数
        num_words = len(words_list)
        # 统计文件的总句子数
        num_sents = len(sents_list)
        # 统计文件的非重复单词数
        num_vocab = len(set([w.lower() for w in words_list]))
        # 打印词的平均字符数, 句子的平均单词数, 每个单词出现的平均次数, 文件名
        print num_chars / num_words, num_words / num_sents, num_words / num_vocab, file_id
开发者ID:BurnellLiu,项目名称:LiuProject,代码行数:29,代码来源:chapter_02.py


示例5: gutenberg

def gutenberg():
    from nltk.corpus import gutenberg
    for t in gutenberg.fileids():
        num_chars = len(gutenberg.raw(t))
        num_words = len(gutenberg.words(t))
        num_sents = len(gutenberg.sents(t))
        num_vocab = len(set([w.lower() for w in gutenberg.words(t)]))
        print int(num_chars/num_words), int(num_words/num_sents), int(num_words/num_vocab), t
开发者ID:kwdhd,项目名称:nlp,代码行数:8,代码来源:main.py


示例6: handle

	def handle(self, *args, **options):
		for fileid in gutenberg.fileids():
			out_dir = CORPUS_DIR + os.sep + fileid.replace(".txt", "")
			if not os.path.isdir(out_dir):
				os.makedirs(out_dir)
			f = open(out_dir + os.sep + "sentences.txt", 'w')
			f.write(gutenberg.raw(fileid))
			f.close()
开发者ID:hashx101,项目名称:wordseerbackend_python,代码行数:8,代码来源:create_collection.py


示例7: similarity_gutenberg

def similarity_gutenberg():
    for x in range(2,6):
        a = []
        b = 0
        c = 0
        d = 1

        for fid in gutenberg.fileids():
            a.append([])
            for ffid in gutenberg.fileids():
               a[b].append(Jaccard(n_window(gutenberg.raw(fid),x),n_window(gutenberg.raw(ffid),x)))
            b += 1

        for i in range(len(a)):
            for j in range(len(a)):
               c += a[i][j]/(len(a)*len(a))
               d = min(d,a[i][j])
        print("Media: "+ str(c))
        print("Minimo: "+ str(d))
开发者ID:gabrielsqsf,项目名称:nltkfun,代码行数:19,代码来源:mineracao.py


示例8: structure

def structure():

    raw = gutenberg.raw("burgess-busterbrown.txt")
    raw[1:20]

    words = gutenberg.words("burgess-busterbrown.txt")
    words[1:20]

    sents = gutenberg.sents("burgess-busterbrown.txt")
    sents[1:20]
开发者ID:AkiraKane,项目名称:Python,代码行数:10,代码来源:c02_text_corpora.py


示例9: for_print

def for_print():
    '''
    显示每个文本的三个统计量
    :return:
    '''
    for fileid in gutenberg.fileids():
        num_chars=len(gutenberg.raw(fileid))
        num_words=len(gutenberg.words(fileid))
        num_sents=len(gutenberg.sents(fileid))
        num_vocab=len(set([w.lower() for w in gutenberg.words(fileid)]))
        print int(num_chars/num_words),int(num_words/num_sents),int(num_words/num_vocab),fileid
开发者ID:Paul-Lin,项目名称:misc,代码行数:11,代码来源:toturial.py


示例10: fun02

def fun02():
    """fun02"""
    for fileid in gutenberg.fileids():
        num_chars = len(gutenberg.raw(fileid))
        num_words = len(gutenberg.words(fileid))
        num_sents = len(gutenberg.sents(fileid))
        num_vocab = len(set([w.lower() for w in gutenberg.words(fileid)]))
        # average word length average sentence length
        print int(num_chars/num_words), int(num_words/num_sents),
        # number of times each vocabulary item appers in the text
        print int(num_words/num_vocab), fileid
开发者ID:gree2,项目名称:hobby,代码行数:11,代码来源:ch02.py


示例11: page57

def page57():
    """Statistics from the Gutenberg corpora"""
    from nltk.corpus import gutenberg

    for fileid in gutenberg.fileids():
        num_chars = len(gutenberg.raw(fileid))
        num_words = len(gutenberg.words(fileid))
        num_sents = len(gutenberg.sents(fileid))
        num_vocab = len(set([w.lower() for w in gutenberg.words(fileid)]))
        print int(num_chars / num_words), int(num_words / num_sents),
        print int(num_words / num_vocab), fileid
开发者ID:andreoliwa,项目名称:nlp-book,代码行数:11,代码来源:book_examples.py


示例12: solve_p2_greedy

def solve_p2_greedy(file):
  lines = [l.lower().split("|")[1:-1] for l in open(file)]
  slices = slice(lines)

  n = 3
  corpus = NgramLetterCorpus(n)
  for fileid in gutenberg.fileids()[:3]:
    corpus.update(gutenberg.raw(fileid))

  slices = unshred3(slices, corpus)
  print "FINAL: "
  for l in linearize(slices):
    print "".join(l)
开发者ID:indraastra,项目名称:puzzles,代码行数:13,代码来源:solve.py


示例13: test_moby_dick_window

 def test_moby_dick_window(self):
     #just make sure we
     window_sizes = xrange(100, 6000, 100)
     text = gutenberg.raw('melville-moby_dick.txt')
     tokens = tokenize(text, only_alphanum=True, clean_punctuation=True)
     total_number_of_tokens = len(tokens)
     for window_size in window_sizes:
         count = 0
         number_of_windows = int(math.ceil( total_number_of_tokens / window_size))
         for current_window in range(0, number_of_windows+1):
             word_window = Window(tokens, window_size, current_window)
             for word in word_window:
                 count += 1
         self.assertEquals(count, total_number_of_tokens)
开发者ID:finiteautomata,项目名称:leninanalysis,代码行数:14,代码来源:test_window.py


示例14: benchmark_sbd

    def benchmark_sbd():
        ps = []
        rs = []
        f1s = []
        c = 0
        for fileid in gutenberg.fileids():
            c += 1
            copy_sents_gold = gutenberg.sents(fileid)
            sents_gold = [s for s in copy_sents_gold]
            for sent_i in range(len(sents_gold)):
                new_sent = [w for w in sents_gold[sent_i] if w.isalpha()]
                sents_gold[sent_i] = new_sent
            text = gutenberg.raw(fileid)
            sents_obtained = split_text(text)
            copy_sents_obtained = sents_obtained.copy()
            for sent_i in range(len(sents_obtained)):
                new_sent = [w.group()
                            for w in re.finditer(r'\w+', sents_obtained[sent_i])
                            if w.group().isalpha()]
                sents_obtained[sent_i] = new_sent
            c_common = 0
            for sent in sents_obtained:
                if sent in  sents_gold:
                    c_common += 1
            p, r, f1 = get_prf(c_common, len(sents_obtained), len(sents_gold))
            print('\n\n', fileid)
            print('Precision: {:0.2f}, Recall: {:0.2f}, F1: {:0.2f}'.format(p, r, f1))
            ps.append(p)
            rs.append(r)
            f1s.append(f1)

        print('\n\nPrecision stats: {:0.3f} +- {:0.4f}'.format(np.mean(ps),
                                                           np.std(ps)))
        print('Recall stats: {:0.3f} +- {:0.4f}'.format(np.mean(rs),
                                                        np.std(rs)))
        print('F1 stats: {:0.3f} +- {:0.4f}'.format(np.mean(f1s),
                                                    np.std(f1s)))
        print(len(f1s))

        good_ps = [p for p in ps if p >= 0.8]
        good_rs = [r for r in rs if r >= 0.8]
        good_f1s = [f1 for f1 in f1s if f1 >= 0.8]
        print('\n Good precision stats: {:0.3f} +- {:0.4f}'.format(np.mean(good_ps),
                                                           np.std(good_ps)))
        print('Good Recall stats: {:0.3f} +- {:0.4f}'.format(np.mean(good_rs),
                                                        np.std(good_rs)))
        print('Good F1 stats: {:0.3f} +- {:0.4f}'.format(np.mean(good_f1s),
                                                    np.std(good_f1s)))
        print(len(good_f1s))
开发者ID:artreven,项目名称:assessment_tools,代码行数:49,代码来源:readability.py


示例15: access

def access():

    monty[0]
    monty[3]
    monty[5]
    monty[-1]

    sent = 'colorless green ideas sleep furiously'
    for char in sent:
        print char,

    from nltk.corpus import gutenberg
    raw = gutenberg.raw('melville-moby_dick.txt')
    fdist = nltk.FreqDist(ch.lower() for ch in raw if ch.isalpha())
    fdist.keys()
开发者ID:AkiraKane,项目名称:Python,代码行数:15,代码来源:c03_strings.py


示例16: load_hamlet

def load_hamlet():
    """
    Loads the contents of the play Hamlet into a string.

    Returns
    -------
    str
        The one big, raw, unprocessed string.

    Example
    -------
    >>> document = load_hamlet()
    >>> document[:80]
    '[The Tragedie of Hamlet by William Shakespeare 1599]\n\n\nActus Primus. Scoena Prim'
    """
    return gutenberg.raw("shakespeare-hamlet.txt")
开发者ID:efrenaguilar95,项目名称:Yelp_Analyzer,代码行数:16,代码来源:test.py


示例17: mean_len

def mean_len():
    a = []
    d = 1

    for fid in gutenberg.fileids():
        b = 0
        c = 0
        st = gutenberg.raw(fid)
        stl = re.split("\n|\.|\!|\?", st)
        stw = re.split("\n|\.|\!|\?| |,| - ", st)
        for el in stl:
            b += len(el)*(1.0)/len(stl)
        for el in stw:
            c += len(el)*(1.0)/len(stw)
        print(fid)
        print("Media Frases: "+ str(b))
        print("Media Palavras: "+ str(c))
开发者ID:gabrielsqsf,项目名称:nltkfun,代码行数:17,代码来源:mineracao.py


示例18: get_moby_dick_document

def get_moby_dick_document():
    moby_dick = gutenberg.raw('melville-moby_dick.txt')
    document = Document(
        url = 'melville-moby_dick.txt',
        name = 'Moby dick',
        text = moby_dick,
        month = 'Oct',
        year = 1851
    )
    # document uses tokenizer func for create tokens, since we need to enforce
    # only_alphanum and clean_punct we need a wrapper
    def tokenizer_wrapper(raw_text):
        return map(str.lower, map(str, tokenize(raw_text, only_alphanum=True, clean_punctuation=True)))
    document.tokenizer = tokenizer_wrapper

    odm_session.flush()

    return document
开发者ID:finiteautomata,项目名称:leninanalysis,代码行数:18,代码来源:moby_dick_tests.py


示例19: gutenberg

def gutenberg():

    emma = nltk.corpus.gutenberg.words('austen-emma.txt')
    print len(emma)

    print gutenberg.fileids()
    emma = gutenberg.words('austen-emma.txt')

    macbeth_sentences = gutenberg.sents('shakespeare-macbeth.txt')
    macbeth_sentences[1037]
    longest_len = max([len(s) for s in macbeth_sentences])
    [s for s in macbeth_sentences if len(s) == longest_len]

    for fileid in gutenberg.fileids():
        num_chars = len(gutenberg.raw(fileid))
        num_words = len(gutenberg.words(fileid))
        num_sents = len(gutenberg.sents(fileid))
        num_vocab = len(set([w.lower() for w in gutenberg.words(fileid)]))
        print int(num_chars/num_words), int(num_words/num_sents), int(num_words/num_vocab), fileid
开发者ID:AkiraKane,项目名称:Python,代码行数:19,代码来源:c02_text_corpora.py


示例20: sentenceTokenization

def sentenceTokenization():

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    mySentenceTokenizer = nltk.sent_tokenize

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    sample_text = 'We will discuss briefly about the basic syntax, structure and design philosophies. There is a defined hierarchical syntax for Python code which you should remember when writing code! Python is a really powerful programming language!'

    sentences_sample = mySentenceTokenizer(text = sample_text)

    print( '\nTotal number of sentences in sample_text: ' + str(len(sentences_sample)) )
    print( '\nSample sentences:' )
    print( sentences_sample )

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    alice = gutenberg.raw(fileids = 'carroll-alice.txt')
    print( "\n### len(alice), total number of characters: " + str(len(alice)) )
    print( "\n### First 1000 characters of carroll-alice.txt:\n" )
    print( alice[0:1000] )

    sentences_alice  = mySentenceTokenizer(text = alice)
    print( '\nTotal number of sentences in Alice: ' + str(len(sentences_alice)) )
    print( '\nFirst 5 sentences in Alice:' )
    for temp_sentence in sentences_alice[0:5]:
        print( "\n### ~~~~~~~~~~ ###\n" + temp_sentence )
    print( "\n### ~~~~~~~~~~ ###" )

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    text_german = europarl_raw.german.raw(fileids = "ep-00-01-17.de")
    print( "\n### len(German text), total number of characters: " + str(len(text_german)) )
    print( "\n### First 1000 characters of ep-00-01-17.de (German text):\n" )
    print( text_german[0:1000] )

    sentences_german = mySentenceTokenizer(text = text_german, language = "german")
    print( '\nTotal number of sentences in German text: ' + str(len(sentences_german)) )
    print( '\nFirst 5 sentences in German text:' )
    for temp_sentence in sentences_german[0:5]:
        print( "\n### ~~~~~~~~~~ ###\n" + temp_sentence )
    print( "\n### ~~~~~~~~~~ ###" )

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    return( None )
开发者ID:paradisepilot,项目名称:statistics,代码行数:42,代码来源:TextTokenization.py



注:本文中的nltk.corpus.gutenberg.raw函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python gutenberg.sents函数代码示例发布时间:2022-05-27
下一篇:
Python gutenberg.fileids函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap