• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python gutenberg.fileids函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nltk.corpus.gutenberg.fileids函数的典型用法代码示例。如果您正苦于以下问题:Python fileids函数的具体用法?Python fileids怎么用?Python fileids使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了fileids函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: exercise_gutenberg

def exercise_gutenberg():
    # 打印古腾堡项目的文件列表
    print gutenberg.fileids()

    # 挑选一个文本: 简-奥斯丁的《爱玛》
    emma = gutenberg.words("austen-emma.txt")

    # 查看书的长度
    print len(emma)

    # 导入文本
    emma_text = nltk.Text(emma)
    emma_text.concordance("surprize")

    for file_id in gutenberg.fileids():
        chars_list = gutenberg.raw(file_id)
        words_list = gutenberg.words(file_id)
        sents_list = gutenberg.sents(file_id)

        # 统计文件的总字符数
        num_chars = len(chars_list)
        # 统计文件的总单词数
        num_words = len(words_list)
        # 统计文件的总句子数
        num_sents = len(sents_list)
        # 统计文件的非重复单词数
        num_vocab = len(set([w.lower() for w in words_list]))
        # 打印词的平均字符数, 句子的平均单词数, 每个单词出现的平均次数, 文件名
        print num_chars / num_words, num_words / num_sents, num_words / num_vocab, file_id
开发者ID:BurnellLiu,项目名称:LiuProject,代码行数:29,代码来源:chapter_02.py


示例2: fun01

def fun01():
    """fun01"""
    print gutenberg.fileids()
    # emma by jane austen
    emma = gutenberg.words('austen-emma.txt')
    # how many words it contains
    print len(emma)
    print Text(emma).concordance("surprize")
开发者ID:gree2,项目名称:hobby,代码行数:8,代码来源:ch02.py


示例3: handle

	def handle(self, *args, **options):
		for fileid in gutenberg.fileids():
			out_dir = CORPUS_DIR + os.sep + fileid.replace(".txt", "")
			if not os.path.isdir(out_dir):
				os.makedirs(out_dir)
			f = open(out_dir + os.sep + "sentences.txt", 'w')
			f.write(gutenberg.raw(fileid))
			f.close()
开发者ID:hashx101,项目名称:wordseerbackend_python,代码行数:8,代码来源:create_collection.py


示例4: gutenberg

def gutenberg():
    from nltk.corpus import gutenberg
    for t in gutenberg.fileids():
        num_chars = len(gutenberg.raw(t))
        num_words = len(gutenberg.words(t))
        num_sents = len(gutenberg.sents(t))
        num_vocab = len(set([w.lower() for w in gutenberg.words(t)]))
        print int(num_chars/num_words), int(num_words/num_sents), int(num_words/num_vocab), t
开发者ID:kwdhd,项目名称:nlp,代码行数:8,代码来源:main.py


示例5: gutenberg

def gutenberg():

    emma = nltk.corpus.gutenberg.words('austen-emma.txt')
    print len(emma)

    print gutenberg.fileids()
    emma = gutenberg.words('austen-emma.txt')

    macbeth_sentences = gutenberg.sents('shakespeare-macbeth.txt')
    macbeth_sentences[1037]
    longest_len = max([len(s) for s in macbeth_sentences])
    [s for s in macbeth_sentences if len(s) == longest_len]

    for fileid in gutenberg.fileids():
        num_chars = len(gutenberg.raw(fileid))
        num_words = len(gutenberg.words(fileid))
        num_sents = len(gutenberg.sents(fileid))
        num_vocab = len(set([w.lower() for w in gutenberg.words(fileid)]))
        print int(num_chars/num_words), int(num_words/num_sents), int(num_words/num_vocab), fileid
开发者ID:AkiraKane,项目名称:Python,代码行数:19,代码来源:c02_text_corpora.py


示例6: similarity_gutenberg

def similarity_gutenberg():
    for x in range(2,6):
        a = []
        b = 0
        c = 0
        d = 1

        for fid in gutenberg.fileids():
            a.append([])
            for ffid in gutenberg.fileids():
               a[b].append(Jaccard(n_window(gutenberg.raw(fid),x),n_window(gutenberg.raw(ffid),x)))
            b += 1

        for i in range(len(a)):
            for j in range(len(a)):
               c += a[i][j]/(len(a)*len(a))
               d = min(d,a[i][j])
        print("Media: "+ str(c))
        print("Minimo: "+ str(d))
开发者ID:gabrielsqsf,项目名称:nltkfun,代码行数:19,代码来源:mineracao.py


示例7: page57

def page57():
    """Statistics from the Gutenberg corpora"""
    from nltk.corpus import gutenberg

    for fileid in gutenberg.fileids():
        num_chars = len(gutenberg.raw(fileid))
        num_words = len(gutenberg.words(fileid))
        num_sents = len(gutenberg.sents(fileid))
        num_vocab = len(set([w.lower() for w in gutenberg.words(fileid)]))
        print int(num_chars / num_words), int(num_words / num_sents),
        print int(num_words / num_vocab), fileid
开发者ID:andreoliwa,项目名称:nlp-book,代码行数:11,代码来源:book_examples.py


示例8: for_print

def for_print():
    '''
    显示每个文本的三个统计量
    :return:
    '''
    for fileid in gutenberg.fileids():
        num_chars=len(gutenberg.raw(fileid))
        num_words=len(gutenberg.words(fileid))
        num_sents=len(gutenberg.sents(fileid))
        num_vocab=len(set([w.lower() for w in gutenberg.words(fileid)]))
        print int(num_chars/num_words),int(num_words/num_sents),int(num_words/num_vocab),fileid
开发者ID:Paul-Lin,项目名称:misc,代码行数:11,代码来源:toturial.py


示例9: create_model_from_NLTK

def create_model_from_NLTK():
    filepath = "nltkcorpus.txt"
    if isfile(filepath):
        return create_model(filepath= filepath, save=False)
    else:
        from nltk.corpus import reuters, brown, gutenberg
        sents = reuters.sents() + brown.sents()
        for gsents in [gutenberg.sents(fid) for fid in gutenberg.fileids()]:
            sents += gsents

        return create_model(sentences=sents, savename=filepath)
开发者ID:ieaalto,项目名称:CCProject,代码行数:11,代码来源:semantics.py


示例10: fun02

def fun02():
    """fun02"""
    for fileid in gutenberg.fileids():
        num_chars = len(gutenberg.raw(fileid))
        num_words = len(gutenberg.words(fileid))
        num_sents = len(gutenberg.sents(fileid))
        num_vocab = len(set([w.lower() for w in gutenberg.words(fileid)]))
        # average word length average sentence length
        print int(num_chars/num_words), int(num_words/num_sents),
        # number of times each vocabulary item appers in the text
        print int(num_words/num_vocab), fileid
开发者ID:gree2,项目名称:hobby,代码行数:11,代码来源:ch02.py


示例11: solve_p2_greedy

def solve_p2_greedy(file):
  lines = [l.lower().split("|")[1:-1] for l in open(file)]
  slices = slice(lines)

  n = 3
  corpus = NgramLetterCorpus(n)
  for fileid in gutenberg.fileids()[:3]:
    corpus.update(gutenberg.raw(fileid))

  slices = unshred3(slices, corpus)
  print "FINAL: "
  for l in linearize(slices):
    print "".join(l)
开发者ID:indraastra,项目名称:puzzles,代码行数:13,代码来源:solve.py


示例12: train

 def train(self):
     self.vocabulary=set()
     
     this_bigrams=[]
     self.unigrams = FreqDist([])
     
     for fileid in gutenberg.fileids():
         for sentence in gutenberg.sents(fileid):
             words=["<s>",] + [x.lower() for x in sentence if wordRE.search(x)] + ["</s>",]
             this_bigrams += bigrams(words)
             self.vocabulary.update(words)
             self.unigrams.update(words)
     self.bigrams=ConditionalFreqDist(this_bigrams)
     self.V = len(self.vocabulary)
开发者ID:slee17,项目名称:NLP,代码行数:14,代码来源:LanguageModel.py


示例13: benchmark_sbd

    def benchmark_sbd():
        ps = []
        rs = []
        f1s = []
        c = 0
        for fileid in gutenberg.fileids():
            c += 1
            copy_sents_gold = gutenberg.sents(fileid)
            sents_gold = [s for s in copy_sents_gold]
            for sent_i in range(len(sents_gold)):
                new_sent = [w for w in sents_gold[sent_i] if w.isalpha()]
                sents_gold[sent_i] = new_sent
            text = gutenberg.raw(fileid)
            sents_obtained = split_text(text)
            copy_sents_obtained = sents_obtained.copy()
            for sent_i in range(len(sents_obtained)):
                new_sent = [w.group()
                            for w in re.finditer(r'\w+', sents_obtained[sent_i])
                            if w.group().isalpha()]
                sents_obtained[sent_i] = new_sent
            c_common = 0
            for sent in sents_obtained:
                if sent in  sents_gold:
                    c_common += 1
            p, r, f1 = get_prf(c_common, len(sents_obtained), len(sents_gold))
            print('\n\n', fileid)
            print('Precision: {:0.2f}, Recall: {:0.2f}, F1: {:0.2f}'.format(p, r, f1))
            ps.append(p)
            rs.append(r)
            f1s.append(f1)

        print('\n\nPrecision stats: {:0.3f} +- {:0.4f}'.format(np.mean(ps),
                                                           np.std(ps)))
        print('Recall stats: {:0.3f} +- {:0.4f}'.format(np.mean(rs),
                                                        np.std(rs)))
        print('F1 stats: {:0.3f} +- {:0.4f}'.format(np.mean(f1s),
                                                    np.std(f1s)))
        print(len(f1s))

        good_ps = [p for p in ps if p >= 0.8]
        good_rs = [r for r in rs if r >= 0.8]
        good_f1s = [f1 for f1 in f1s if f1 >= 0.8]
        print('\n Good precision stats: {:0.3f} +- {:0.4f}'.format(np.mean(good_ps),
                                                           np.std(good_ps)))
        print('Good Recall stats: {:0.3f} +- {:0.4f}'.format(np.mean(good_rs),
                                                        np.std(good_rs)))
        print('Good F1 stats: {:0.3f} +- {:0.4f}'.format(np.mean(good_f1s),
                                                    np.std(good_f1s)))
        print(len(good_f1s))
开发者ID:artreven,项目名称:assessment_tools,代码行数:49,代码来源:readability.py


示例14: __init__

    def __init__(self):
        self.num_passages = 10
        self.passagesize = 1000
        self.maxpeople = 10
        self.maxnouns = 5
        self.total_passages = 10*len(gutenberg.fileids())

        self.skeletons = []
        self.index_dicts = []
        #Load all of the things into memory
        #j = 0
        for fileid in gutenberg.fileids():
            for k in range(self.num_passages):
                filename = fileid+'_'+str(k) +'_skeleton.txt' 
                f = open(filename, 'r')
                self.skeletons.append(f.read().split(" ")) 
                f.close()
                filename = fileid+'_'+str(k) +'_indices.txt'
                f = open(filename, 'r')
                self.index_dicts.append({}) 
                for line in f.readlines():
                    splitted = line.split()
                    self.index_dicts[-1][splitted[0]] = splitted[1:]
                f.close()
开发者ID:jacquelinekay,项目名称:facelibs,代码行数:24,代码来源:server.py


示例15: find_phrases

def find_phrases(regexp):
	fids = gutenberg.fileids()
	rs = []
	for fid in fids:
		txt = nltk.Text(gutenberg.words(fid))
		ts = nltk.text.TokenSearcher(txt)
		r = ts.findall(regexp)
		for x in r:
			if x[0].lower() in wrong_vbs:
				x[0] = 'looking at'
			if x[-1].lower() in wrong_vbs:
				x[-1] = 'me'
		rs.extend(r)

	return rs
开发者ID:mobeets,项目名称:imperatives,代码行数:15,代码来源:imperatives_gutenberg.py


示例16: load_data

def load_data():
    global N, words

    freqs = [ FreqDist(corpus.words(fileid)) for fileid in corpus.fileids() ]
    words = list(set(word 
                    for dist in freqs 
                    for word in dist.keys()
                    if word not in ENGLISH_STOP_WORDS and
                    word not in punctuation))

    data = []
    N = len(words)
    for dist in freqs:
        x = volumize(dist)
        data.append((x, x.w))

    return data
开发者ID:Aaronduino,项目名称:ConvNetPy,代码行数:17,代码来源:similarity.py


示例17: mean_len

def mean_len():
    a = []
    d = 1

    for fid in gutenberg.fileids():
        b = 0
        c = 0
        st = gutenberg.raw(fid)
        stl = re.split("\n|\.|\!|\?", st)
        stw = re.split("\n|\.|\!|\?| |,| - ", st)
        for el in stl:
            b += len(el)*(1.0)/len(stl)
        for el in stw:
            c += len(el)*(1.0)/len(stw)
        print(fid)
        print("Media Frases: "+ str(b))
        print("Media Palavras: "+ str(c))
开发者ID:gabrielsqsf,项目名称:nltkfun,代码行数:17,代码来源:mineracao.py


示例18: load_data

def load_data():
    global N, words

    freqs = [ FreqDist(corpus.words(fileid)) for fileid in corpus.fileids() ]
    words = list(set(word 
                    for dist in freqs 
                    for word in dist.keys()
                    if word not in ENGLISH_STOP_WORDS and
                    word not in punctuation))

    data = []
    N = len(words)
    for dist in freqs:
        V = Vol(1, 1, N, 0.0)
        for i, word in enumerate(words):
            V.w[i] = dist.freq(word)
        data.append((V, V.w))

    return data
开发者ID:Aaronduino,项目名称:ConvNetPy,代码行数:19,代码来源:topics.py


示例19: nltk_test_2

def nltk_test_2():
	# Count each token in each text of the Gutenberg collection
	fd = FreqDist()
	for text in gutenberg.fileids():
		for word in gutenberg.words(text):
			fd[word.lower()] += 1
    # Initialize two empty lists which will hold our ranks and frequencies
	ranks = []
	freqs = []
	# Generate a (rank, frequency) point for each counted token and append to the respective lists
	for rank, word in enumerate(fd):
		ranks.append(rank + 1)
		freqs.append(fd[word])
	freqs.sort(reverse=True)

	# Plot rank vs frequency on a log 

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python gutenberg.raw函数代码示例发布时间:2022-05-27
下一篇:
Python conll2000.chunked_sents函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap