• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python networkx.from_scipy_sparse_matrix函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.from_scipy_sparse_matrix函数的典型用法代码示例。如果您正苦于以下问题:Python from_scipy_sparse_matrix函数的具体用法?Python from_scipy_sparse_matrix怎么用?Python from_scipy_sparse_matrix使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了from_scipy_sparse_matrix函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_from_scipy_sparse_matrix_parallel_edges

    def test_from_scipy_sparse_matrix_parallel_edges(self):
        """Tests that the :func:`networkx.from_scipy_sparse_matrix` function
        interprets integer weights as the number of parallel edges when
        creating a multigraph.

        """
        A = sparse.csr_matrix([[1, 1], [1, 2]])
        # First, with a simple graph, each integer entry in the adjacency
        # matrix is interpreted as the weight of a single edge in the graph.
        expected = nx.DiGraph()
        edges = [(0, 0), (0, 1), (1, 0)]
        expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
        expected.add_edge(1, 1, weight=2)
        actual = nx.from_scipy_sparse_matrix(A, parallel_edges=True,
                                             create_using=nx.DiGraph())
        assert_graphs_equal(actual, expected)
        actual = nx.from_scipy_sparse_matrix(A, parallel_edges=False,
                                             create_using=nx.DiGraph())
        assert_graphs_equal(actual, expected)
        # Now each integer entry in the adjacency matrix is interpreted as the
        # number of parallel edges in the graph if the appropriate keyword
        # argument is specified.
        edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
        expected = nx.MultiDiGraph()
        expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
        actual = nx.from_scipy_sparse_matrix(A, parallel_edges=True,
                                             create_using=nx.MultiDiGraph())
        assert_graphs_equal(actual, expected)
        expected = nx.MultiDiGraph()
        expected.add_edges_from(set(edges), weight=1)
        # The sole self-loop (edge 0) on vertex 1 should have weight 2.
        expected[1][1][0]['weight'] = 2
        actual = nx.from_scipy_sparse_matrix(A, parallel_edges=False,
                                             create_using=nx.MultiDiGraph())
        assert_graphs_equal(actual, expected)
开发者ID:argriffing,项目名称:networkx,代码行数:35,代码来源:test_convert_scipy.py


示例2: load_train_test_graphs

def load_train_test_graphs(dataset, recache_input):
    raw_mat_path = 'data/{}.npz'.format(dataset)
    train_graph_path = 'data/{}/train_graph.pkl'.format(dataset)
    test_graph_path = 'data/{}/test_graph.pkl'.format(dataset)

    if recache_input:
        print('loading sparse matrix from {}'.format(raw_mat_path))
        m = load_sparse_csr(raw_mat_path)

        print('splitting train and test...')
        train_m, test_m = split_train_test(
            m,
            weights=[0.9, 0.1])

        print('converting to nx.DiGraph')
        train_g = nx.from_scipy_sparse_matrix(train_m, create_using=nx.DiGraph(), edge_attribute='sign')
        test_g = nx.from_scipy_sparse_matrix(test_m, create_using=nx.DiGraph(), edge_attribute='sign')
                
        print('saving train and test graphs...')
        nx.write_gpickle(train_g, train_graph_path)
        nx.write_gpickle(test_g, test_graph_path)
    else:
        print('loading train and test graphs...')
        train_g = nx.read_gpickle(train_graph_path)
        test_g = nx.read_gpickle(test_graph_path)
    return train_g, test_g
开发者ID:xiaohan2012,项目名称:snpp,代码行数:26,代码来源:data.py


示例3: submatrix_pull_via_networkx

def submatrix_pull_via_networkx(matrix, node_array, directed=True):

    if directed:
        graph = nx.from_scipy_sparse_matrix(matrix, create_using=nx.DiGraph())
    else:
        graph = nx.from_scipy_sparse_matrix(matrix, create_using=nx.Graph())

    sub_graph = graph.subgraph(list(node_array))

    sub_matrix = nx.to_scipy_sparse_matrix(sub_graph, dtype=np.float64, format="csr")

    return sub_matrix
开发者ID:Auguraculums,项目名称:reveal-user-classification,代码行数:12,代码来源:snow_2014_graph_dataset_util.py


示例4: community

def community(document):
	sentences = sent_tokenize(document) 
	bow_matrix = CountVectorizer(stop_words = 'english').fit_transform(sentences)
	normalized = TfidfTransformer().fit_transform(bow_matrix)
	similarity_graph = normalized * normalized.T
	nx_graph = nx.from_scipy_sparse_matrix(similarity_graph)
	sub_graphs = []
    #n gives the number of sub graphs
	edge_wts = nx_graph.edges(data=True)
	edge_wts.sort(key=lambda (a, b, dct): dct['weight'],reverse=True)
	k = 10 #number of sentence in summary
	G = nx.Graph()
	for i in nx_graph.nodes():
		G.add_node(i)
	for u,v,d in edge_wts:
		G.add_edge(u,v,d)
		sub_graphs = nx.connected_component_subgraphs(G)
		# print sub_graphs
		n = len(sub_graphs)
		if n == k:	break
	inSummary = [0 for i in range(len(sentences))]

	n = len(sub_graphs)
	for i in range(n):
		sen = [sentences[j] for j in (sub_graphs[i].nodes())]
		arr = [j for j in (sub_graphs[i].nodes())]
		scores = textrank(sen)
		# print (scores)
		# print (arr)
		for j in range(len(arr)):
			inSummary[arr[j]] = scores[j];
	# print inSummary
	summ = [(sentences[i],inSummary[i]) for i in range(len(inSummary)) ]
	# print summ[0]
	return summ
开发者ID:Shushman,项目名称:news-article-summarizer,代码行数:35,代码来源:community.py


示例5: draw_adjacency_graph

def draw_adjacency_graph (A,
    node_color=[], 
    size=10,
    layout='graphviz', 
    prog = 'neato',
    node_size=80):

    graph = nx.from_scipy_sparse_matrix(A)

    plt.figure(figsize=(size,size))
    plt.grid(False)
    plt.axis('off')

    if layout == 'graphviz':
        pos = nx.graphviz_layout(graph, prog = prog)
    else:
        pos = nx.spring_layout(graph)

    if not node_color:
        node_color='gray'
    nx.draw_networkx_nodes(graph, pos,
                           node_color = node_color, 
                           alpha = 0.6, 
                           node_size = node_size, 
                           cmap = plt.get_cmap('autumn'))
    nx.draw_networkx_edges(graph, pos, alpha = 0.5)
    plt.show()
开发者ID:nickgentoo,项目名称:pyEDeN,代码行数:27,代码来源:display.py


示例6: classify_samples

def classify_samples(data, labels, unmarked_idxs,
                     sample_size, n_runs, n_clusters):
    unmarked_point_probs = {}
    all_idxs = range(len(unmarked_idxs))
    random.shuffle(all_idxs)
    keep_raw_idxs = sorted(all_idxs[:sample_size])
    delete_raw_idxs = sorted(all_idxs[sample_size:])
    keep_idxs, delete_idxs = (unmarked_idxs[keep_raw_idxs],
                              unmarked_idxs[delete_raw_idxs])

    bagging_graph = nx.from_scipy_sparse_matrix(data)
    bagging_graph.remove_nodes_from(delete_idxs)
    bagging_adj_matrix = nx.to_scipy_sparse_matrix(bagging_graph)
    bagging_labels = np.delete(labels, delete_idxs, 0)
    bagging_unmarked_idxs = np.where(
        bagging_labels[:, 0] == -1)[0]

    clf = TransductiveClassifier(n_runs, n_clusters)
    clf.fit(bagging_adj_matrix, bagging_labels)
    assert len(keep_idxs) == len(bagging_unmarked_idxs)
    for i, idx in enumerate(keep_idxs):
        unmarked_point_probs[idx] = clf.transduction_[
            bagging_unmarked_idxs[i]]

    return unmarked_point_probs
开发者ID:rsbowman,项目名称:yeast-protein,代码行数:25,代码来源:transduction.py


示例7: identity_conversion

    def identity_conversion(self, G, A, create_using):
        GG = nx.from_scipy_sparse_matrix(A, create_using=create_using)
        self.assert_equal(G, GG)

        GW = nx.to_networkx_graph(A, create_using=create_using)
        self.assert_equal(G, GW)

        GI = create_using.__class__(A)
        self.assert_equal(G, GI)

        ACSR = A.tocsr()
        GI = create_using.__class__(ACSR)
        self.assert_equal(G, GI)

        ACOO = A.tocoo()
        GI = create_using.__class__(ACOO)
        self.assert_equal(G, GI)

        ACSC = A.tocsc()
        GI = create_using.__class__(ACSC)
        self.assert_equal(G, GI)

        AD = A.todense()
        GI = create_using.__class__(AD)
        self.assert_equal(G, GI)

        AA = A.toarray()
        GI = create_using.__class__(AA)
        self.assert_equal(G, GI)
开发者ID:argriffing,项目名称:networkx,代码行数:29,代码来源:test_convert_scipy.py


示例8: configuration_model

    def configuration_model(self, return_copy=False):
        """ Reads AdjMatrixSequence Object and returns an edge randomized version.
            Result is written to txt file.
        """
        if self.is_directed:
            nx_creator = nx.DiGraph()
        else:
            nx_creator = nx.Graph()

        if return_copy:
            x = self[:]
        else:
            x = self

        # t_edges=[]
        for i in range(len(self)):
            print "configuration model: ", i
            graphlet = nx.from_scipy_sparse_matrix(x[i], create_using=nx_creator)
            graphlet = gwh.randomize_network(graphlet)
            x[i] = nx.to_scipy_sparse_matrix(graphlet, dtype="int")
            # for u,v in graphlet.edges():
            #    t_edges.append((u,v,i))

        # gwh.write_array(t_edges,"Configuration_model.txt")

        if return_copy:
            return x
        else:
            return
开发者ID:hartmutlentz,项目名称:lonetop,代码行数:29,代码来源:MatrixList_obsolete.py


示例9: format_out_relations

def format_out_relations(relations, out_):
    """Format relations in the format they is detemined in parameter out_.

    Parameters
    ----------
    relations: scipy.sparse matrix
        the relations expressed in a sparse way.
    out_: optional, ['sparse', 'network', 'sp_relations']
        the output format we desired.

    Returns
    -------
    relations: decided format
        the relations expressed in the decided format.

    """

    if out_ == 'sparse':
        relations_o = relations
    elif out_ == 'network':
        relations_o = nx.from_scipy_sparse_matrix(relations)
    elif out_ == 'sp_relations':
        relations_o = RegionDistances(relations)
    elif out_ == 'list':
        relations_o = []
        for i in range(relations.shape[0]):
            relations_o.append(list(relations.getrow(i).nonzero()[0]))
    return relations_o
开发者ID:tgquintela,项目名称:pySpatialTools,代码行数:28,代码来源:formatters.py


示例10: plot_subgraph_links

def plot_subgraph_links(sparse_m, query, degree=0, layout="std", graph=None):

    cond = np.where(query)[0]

    if graph is None:
        graph = nx.from_scipy_sparse_matrix(sparse_m)

    if degree == 0:
        sub1 = cond
        node_color = "r"
    elif degree == 1:
        sub1 = list(set(cond) | set(
            compute_sub_adj(sparse_m, cond)))
 #       print(sub1)
        node_color = [("r" if (n in cond) else "b") for n in sub1]
 #       print(node_color)
    elif degree == 2:
        sub0 = set(cond) | set(compute_sub_adj(sparse_m, cond))
        sub1 = list(sub0 | set(compute_sub_adj(sparse_m, list(sub0))))
        node_color = [("r" if (n in cond) else "b" if (
            n in sub0) else "y") for n in sub1]

    renderer[layout](
        graph.subgraph(sub1),
        nodelist=list(sub1),
        node_color=node_color,
        alpha=0.5,
        labels={n: str(n) for n in sub1})
开发者ID:yama1968,项目名称:graph_clustering,代码行数:28,代码来源:graph_helpers.py


示例11: learnStructure

def learnStructure(dataP, dataS, Pp, Ps, TAN= True):
    tempMatrix = [[0 for i in range(len(dataP))] for j in range(len(dataP))]
    for i in range(len(dataP)):
        for j in range(i+1, len(dataP)):
            temp = 0.0
            if np.corrcoef(dataP[i], dataP[j])[0][1] != 1.0:
                temp += Pp * math.log(1-((np.corrcoef(dataP[i], dataP[j])[0][1])**2))
            if np.corrcoef(dataS[i], dataS[j])[0][1] != 1.0:
                temp += Ps * math.log(1-((np.corrcoef(dataS[i], dataS[j])[0][1])**2))
            temp *= (0.5)
            tempMatrix[i][j] = temp
            #tempMatrix[j][i] = temp
    MaxG = nx.DiGraph()
    if TAN:
        G = nx.from_scipy_sparse_matrix(minimum_spanning_tree(csr_matrix(tempMatrix)))
        adjList = G.adj
        i = 0
        notReturnable = {}
        MaxG = getDirectedTree(adjList, notReturnable, MaxG, i)
    else:
        G = nx.Graph(np.asmatrix(tempMatrix))
        adjList = sorted([(u,v,d['weight']) for (u,v,d) in G.edges(data=True)], key=lambda x:x[2])
        i = 2
        MaxG = getDirectedGraph(adjList, MaxG, i)
    return MaxG
开发者ID:SriganeshNk,项目名称:fMRI,代码行数:25,代码来源:ETL.py


示例12: textrank

def textrank(sentences):
    bow_matrix = CountVectorizer().fit_transform(sentences)
    normalized = TfidfTransformer().fit_transform(bow_matrix)
    similarity_graph = normalized * normalized.T
    nx_graph = nx.from_scipy_sparse_matrix(similarity_graph)
    scores = nx.pagerank(nx_graph)
    return sorted(((scores[i], i, s) for i, s in enumerate(sentences)), reverse=True)
开发者ID:ankit141189,项目名称:bing,代码行数:7,代码来源:generate_document.py


示例13: find_min_spanning_tree

def find_min_spanning_tree(A):
	"""
		Input:
			A : Adjecency matrix in scipy.sparse format.
		Output:
			T : Minimum spanning tree.
			run_time : Total runtime to find minimum spanning tree 

	"""
	# Record start time.
	start = time.time()

	# Check if graph is pre-processed, if yes then don't process it again.
	if os.path.exists('../Data/dcg_graph.json'):
		with open('../Data/dcg_graph.json') as data:
			d = json.load(data)
		G = json_graph.node_link_graph(d)

	# If graph is not preprocessed then convert it to a Graph and save it to a JSON file.
	else:
		G = from_scipy_sparse_matrix(A)
		data = json_graph.node_link_data(G)
		with open('../Data/dcg_graph.json', 'w') as outfile:
			json.dump(data, outfile)

	# Find MST.
	T = minimum_spanning_tree(G)

	#Record total Runtime
	run_time = time.time()-start
	return T, run_time
开发者ID:harshaneelhg,项目名称:Thesis,代码行数:31,代码来源:spanning_tree.py


示例14: plot2d

    def plot2d(self, title=None, domain=[-1, 1], codomain=[-1, 1], predict=True):
        f, ax = plt.subplots()

        x1 = np.linspace(*domain, 100)
        x2 = np.linspace(*codomain, 100)

        n_samples, n_features = self.X_.shape
        G = nx.from_scipy_sparse_matrix(self.A_)
        pos = {i: self.X_[i] for i in range(n_samples)}
        cm_sc = ListedColormap(["#AAAAAA", "#FF0000", "#0000FF"])

        if title is not None:
            ax.set_title(title)

        ax.set_xlabel("$x_1$")
        ax.set_ylabel("$x_2$")
        ax.set_xlim(domain)
        ax.set_ylim(codomain)

        nx.draw_networkx_nodes(G, pos, ax=ax, node_size=25, node_color=self.y_, cmap=cm_sc)

        if predict:
            xx1, xx2 = np.meshgrid(x1, x2)
            xfull = np.c_[xx1.ravel(), xx2.ravel()]
            z = self.predict(xfull).reshape(100, 100)

            levels = np.array([-1, 0, 1])
            cm_cs = plt.cm.RdYlBu

            if self.params["gamma_i"] != 0.0:
                nx.draw_networkx_edges(G, pos, ax=ax, edge_color="#AAAAAA")

            ax.contourf(xx1, xx2, z, levels, cmap=cm_cs, alpha=0.25)

        return (f, ax)
开发者ID:Y-oHr-N,项目名称:TextCategorization,代码行数:35,代码来源:multiclass.py


示例15: textrank

def textrank(document):
    pst = PunktSentenceTokenizer()
    sentences = pst.tokenize(document)

    # Bag of Words
    from sklearn.feature_extraction.text import CountVectorizer
    cv = CountVectorizer()
    bow_matrix = cv.fit_transform(sentences)

    from sklearn.feature_extraction.text import TfidfTransformer
    normalized_matrix = TfidfTransformer().fit_transform(bow_matrix)

    ## mirrored matrix where the rows and columns correspond to 
    ## sentences, and the elements describe how similar the
    ## sentences are. score 1 means sentences are exactly the same.
    similarity_graph = normalized_matrix * normalized_matrix.T
    similarity_graph.toarray()

    # PageRank
    import networkx as nx
    nx_graph = nx.from_scipy_sparse_matrix(similarity_graph)

    ## mapping of sentence indices to scores. use them to associate
    ## back to the original sentences and sort them
    scores = nx.pagerank(nx_graph)
    ranked = sorted(((scores[i], s) for i,s in enumerate(sentences)), reverse=True)
    print ranked[0][1]
开发者ID:ko,项目名称:random,代码行数:27,代码来源:textrank.py


示例16: get_key_sentences

    def get_key_sentences(self, n=5):
        '''
        Uses a simple implementation of TextRank to extract the top N sentences
        from a document.

        Sources:
        - Original paper: http://acl.ldc.upenn.edu/acl2004/emnlp/pdf/Mihalcea.pdf
        - Super useful blog post: http://joshbohde.com/blog/document-summarization
        - Wikipedia: http://en.wikipedia.org/wiki/Automatic_summarization#Unsupervised_keyphrase_extraction:_TextRank
        '''
        # Tokenize the document into sentences. More NLP preprocesing should also happen here. 
        sentence_tokenizer = PunktSentenceTokenizer()
        sentences = sentence_tokenizer.tokenize(self.doc)

        # Calculate word counts and TFIDF vectors
        word_counts = CountVectorizer(min_df=0).fit_transform(sentences)
        normalized = TfidfTransformer().fit_transform(word_counts) 

        # Normalized graph * its transpose yields a sentence-level similarity matrix
        similarity_graph = normalized * normalized.T
     
        nx_graph = nx.from_scipy_sparse_matrix(similarity_graph)
        scores = nx.pagerank(nx_graph)
        return sorted(((scores[i],s) for i,s in enumerate(sentences)),
                      reverse=True)[n]
开发者ID:joannaskao,项目名称:judgmental,代码行数:25,代码来源:metadata.py


示例17: cover

def cover(socp_data, N):
    if not settings.paths['graclus']:
        raise Exception(
            "Please provide a path to graclus: settings.paths['graculus'] = PATH.")

    """stacks the socp data and partitions it into N
    local dicts describing constraints R <= s"""
    n = socp_data['c'].shape[0]

    # form the Laplacian and use graculus to partition
    L = form_laplacian(socp_data)
    graph = nx.from_scipy_sparse_matrix(L)

    d = nx.convert.to_dict_of_lists(graph)

    edgepath = "graclus.edgelist"
    with open(edgepath, "w") as f:
        f.write("%d %d\n" % (graph.number_of_nodes(), graph.number_of_edges()))
        for k, v in d.iteritems():
            f.write("%d %s\n" %
                    (k + 1, ' '.join(map(lambda x: str(x + 1), v))))

    import subprocess
    outpath = "graclus.edgelist.part.%d" % N
    proc = subprocess.Popen([settings.paths['graclus'], edgepath, str(N)])
    proc.wait()

    lines = open(outpath, "r").readlines()

    part_vert = []
    for l in lines:
        part_vert.append(int(l.strip()))

    return part_vert[n:]
开发者ID:echu,项目名称:dist_ecos,代码行数:34,代码来源:graclus.py


示例18: compute_clusters_statistic

def compute_clusters_statistic(test_statistic, proximity_matrix, verbose=False):
    """Given a test statistic for each unit and a boolean proximity
    matrix among units, compute the cluster statistic using the
    connected components graph algorithm. It works for sparse
    proximity matrices as well.

    Returns the clusters and their associated cluster statistic.
    """
    # Build a graph from the proximity matrix:
    if issparse(proximity_matrix):
        graph = from_scipy_sparse_matrix(proximity_matrix)
    else:
        graph = from_numpy_matrix(proximity_matrix)

    # Compute connected components:
    clusters = connected_components(graph)
    if verbose: print("Nr. of clusters: %s. Clusters sizes: %s" % (len(clusters), np.array([len(cl) for cl in clusters])))
    # Compute the cluster statistic:
    cluster_statistic = np.zeros(len(clusters))
    for i, cluster in enumerate(clusters):
        cluster_statistic[i] = test_statistic[cluster].sum()

    # final cleanup to prepare easy-to-use results:
    idx = np.argsort(cluster_statistic)[::-1]
    clusters = np.array([np.array(cl, dtype=np.int) for cl in clusters], dtype=np.object)[idx]
    if clusters[0].dtype == np.object: # THIS FIXES A NUMPY BUG (OR FEATURE?)
        # The bug: it seems not possible to create ndarray of type
        # np.object from arrays all of the *same* lenght and desired
        # dtype, i.e. dtype!=np.object. In this case the desired dtype
        # is automatically changed into np.object. Example:
        # array([array([1], dtype=int)], dtype=object)
        clusters = clusters.astype(np.int)

    cluster_statistic = cluster_statistic[idx]
    return clusters, cluster_statistic
开发者ID:smkia,项目名称:cbpktst,代码行数:35,代码来源:cbpktst.py


示例19: test_graph_degree

def test_graph_degree():
    "Graph: Graph Degree"
    A = rand_dm(25, 0.5)
    deg = graph_degree(A.data)
    G = nx.from_scipy_sparse_matrix(A.data)
    nx_deg = G.degree()
    nx_deg = array([nx_deg[k] for k in range(25)])
    assert_equal((deg - nx_deg).all(), 0)
开发者ID:justzx2011,项目名称:qutip,代码行数:8,代码来源:test_graph.py


示例20: __test_save_and_load_graph_npz

 def __test_save_and_load_graph_npz(self, x):
     '''Test save and load a Networkx DiGraph in npz format with np-array wrapping.'''
     out_file = tempfile.TemporaryFile()
     np.savez(out_file, x=np.array([nx.to_scipy_sparse_matrix(x)]))
     out_file.seek(0) # Only needed here to simulate closing & reopening file
     x2 = np.load(out_file)
     y = nx.from_scipy_sparse_matrix(x2['x'][0], nx.DiGraph())
     assert_equal(x.nodes(), y.nodes(), 'Saving and loading did not restore the original object')
     assert_equal(x.edges(), y.edges(), 'Saving and loading did not restore the original object')
开发者ID:orenlivne,项目名称:ober,代码行数:9,代码来源:TestIo.py



注:本文中的networkx.from_scipy_sparse_matrix函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.fruchterman_reingold_layout函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.from_pandas_dataframe函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap