本文整理汇总了Python中networkx.from_pandas_dataframe函数的典型用法代码示例。如果您正苦于以下问题:Python from_pandas_dataframe函数的具体用法?Python from_pandas_dataframe怎么用?Python from_pandas_dataframe使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了from_pandas_dataframe函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: readDGFrameFile
def readDGFrameFile(filename, interRRI_norRNA=1, support_read=3):
fn_stat_dict = nested_dict()
inter, intra = 0, 0
with open(filename, 'r') as TXT:
for line in TXT:
line = line.strip()
if not line or line.startswith('#'):
continue
arr = line.split('\t')
if arr[1] == arr[5]:
intra += 1
else:
inter += 1
fn_stat_dict['inter'] = inter
fn_stat_dict['intra'] = intra
fn_stat_dict['all'] = intra + inter
df = pd.read_csv(filename, header=0, sep='\t')
df['type'] = ['intra' if i == j else 'inter' for i,j in zip(df['lchr'], df['rchr'])]
df_inter_RRI = df[df['type']=='inter']
nx_inter_RRI = nx.from_pandas_dataframe(df_inter_RRI, 'lchr', 'rchr')
fn_stat_dict['uniq RRI'] = len(nx_inter_RRI.edges())
if interRRI_norRNA:
df_inter_RRI = df_inter_RRI[(df_inter_RRI['ltype'].isin(['mRNA', 'lncRNA'])) & (df_inter_RRI['rtype'].isin(['mRNA', 'lncRNA']))]
df_inter_RRI = df_inter_RRI[df_inter_RRI['support']>=support_read]
nx_inter_RRI = nx.from_pandas_dataframe(df_inter_RRI, 'lchr', 'rchr')
nx_inter_RRI_info_dict, G_largest = RRI_network_property2(nx_inter_RRI)
for i,j in nx_inter_RRI_info_dict.items():
fn_stat_dict[i] = j
# fn_stat_df['sampling'] = ''
fn_stat_df = pd.DataFrame(fn_stat_dict, index=[0])
return fn_stat_df
开发者ID:Tsinghua-gongjing,项目名称:test,代码行数:32,代码来源:network_downsampling_stats.py
示例2: test_from_dataframe_all_attr
def test_from_dataframe_all_attr(self, ):
Gtrue = nx.Graph([('E', 'C', {'cost': 9, 'weight': 10}),
('B', 'A', {'cost': 1, 'weight': 7}),
('A', 'D', {'cost': 7, 'weight': 4})])
G = nx.from_pandas_dataframe(self.df, 0, 'b', True)
self.assert_equal(G, Gtrue)
# MultiGraph
MGtrue = nx.MultiGraph(Gtrue)
MGtrue.add_edge('A', 'D', cost=16, weight=4)
MG = nx.from_pandas_dataframe(self.mdf, 0, 'b', True, nx.MultiGraph())
self.assert_equal(MG, MGtrue)
开发者ID:jklaise,项目名称:networkx,代码行数:11,代码来源:test_convert_pandas.py
示例3: read_dir
def read_dir(dir='/Share/home/zhangqf7/gongjing/zebrafish/data/paris/shi-zp-5-rep-combine/downsampling_N', to_dgframe=0, get_inter_intra=1, read_nx=1, interRRI_norRNA=1, support_read=3):
fn_ls = os.listdir(dir)
# print fn_ls
fn_stat_dict = nested_dict()
downsampling_N_draw = dir + '.subnetwork.draw.pdf'
fig,ax=plt.subplots(10,1)
for n,fn in enumerate(fn_ls):
print "process: %s"%(fn)
dfFile = dir + '/' + fn + '/' + '27-DG'
frameFile = dfFile + '.txt'
if to_dgframe:
paris_dg2frame.DG2Frame(dfFile=dfFile, frameFile=frameFile)
if get_inter_intra:
inter, intra = 0, 0
with open(frameFile, 'r') as TXT:
for line in TXT:
line = line.strip()
if not line or line.startswith('#'):
continue
arr = line.split('\t')
if arr[1] == arr[5]:
intra += 1
else:
inter += 1
fn_stat_dict[fn]['inter'] = inter
fn_stat_dict[fn]['intra'] = intra
fn_stat_dict[fn]['all'] = intra + inter
if read_nx:
df = pd.read_csv(frameFile, header=0, sep='\t')
df['type'] = ['intra' if i == j else 'inter' for i,j in zip(df['lchr'], df['rchr'])]
df_inter_RRI = df[df['type']=='inter']
nx_inter_RRI = nx.from_pandas_dataframe(df_inter_RRI, 'lchr', 'rchr')
fn_stat_dict[fn]['uniq RRI'] = len(nx_inter_RRI.edges())
if interRRI_norRNA:
df_inter_RRI = df_inter_RRI[(df_inter_RRI['ltype'].isin(['mRNA', 'lncRNA'])) & (df_inter_RRI['rtype'].isin(['mRNA', 'lncRNA']))]
df_inter_RRI = df_inter_RRI[df_inter_RRI['support']>=support_read]
nx_inter_RRI = nx.from_pandas_dataframe(df_inter_RRI, 'lchr', 'rchr')
nx_inter_RRI_info_dict, G_largest = RRI_network_property2(nx_inter_RRI)
for i,j in nx_inter_RRI_info_dict.items():
fn_stat_dict[fn][i] = j
# fn_stat_dict[fn]['uniq RRI'] = len(nx_inter_RRI.edges())
if n < 10:
draw_graph(G_largest, ax=ax[n])
plt.savefig(downsampling_N_draw)
savefn = dir + '.stat.txt'
fn_stat_df = pd.DataFrame.from_dict(fn_stat_dict)
fn_stat_df = fn_stat_df.T
fn_stat_df['sampling'] = fn_stat_df.index
print fn_stat_df.head()
fn_stat_df.to_csv(savefn, header=True, index=False, sep='\t')
return fn_stat_df
开发者ID:Tsinghua-gongjing,项目名称:test,代码行数:54,代码来源:network_downsampling_stats.py
示例4: read_graph
def read_graph(filename, directed=True, sep=' ', header = None):
"""
Create networkx graph using pandas.
:param filename: every line (u, v)
:param directed: boolean
:param sep: separator in file
:return
"""
df = pd.read_csv(filename, sep=sep, header = header)
if directed:
G = nx.from_pandas_dataframe(df, 0, 1, create_using=nx.DiGraph())
else:
G = nx.from_pandas_dataframe(df, 0, 1)
return G
开发者ID:nd7141,项目名称:PIMUS,代码行数:14,代码来源:MIA.py
示例5: test_from_dataframe_all_attr
def test_from_dataframe_all_attr(self,):
Gtrue = nx.Graph(
[
("E", "C", {"cost": 9, "weight": 10}),
("B", "A", {"cost": 1, "weight": 7}),
("A", "D", {"cost": 7, "weight": 4}),
]
)
G = nx.from_pandas_dataframe(self.df, 0, "b", True)
self.assert_equal(G, Gtrue)
# MultiGraph
MGtrue = nx.MultiGraph(Gtrue)
MGtrue.add_edge("A", "D", cost=16, weight=4)
MG = nx.from_pandas_dataframe(self.mdf, 0, "b", True, nx.MultiGraph())
self.assert_equal(MG, MGtrue)
开发者ID:CrazyPython,项目名称:networkx,代码行数:15,代码来源:test_convert_pandas.py
示例6: make_graph
def make_graph(edgesdf, edge_attr='fdist', name=None):
g = nx.from_pandas_dataframe(edgesdf, source='node1',
target='node2', edge_attr=edge_attr)
if name:
g.add_node('namenode', name=name)
return g
开发者ID:crupley,项目名称:hoodie-development,代码行数:7,代码来源:graph.py
示例7: build_file_move_graph
def build_file_move_graph(file_frame):
move_frame = file_frame[file_frame.move]
move_graph = nx.from_pandas_dataframe(
move_frame,
source='file_path1', target='file_path2',
edge_attr='hexsha', create_using=nx.DiGraph())
return move_graph
开发者ID:ashapochka,项目名称:saapy,代码行数:7,代码来源:git_commit_utils.py
示例8: __init__
def __init__(self, path):
'''Constructor'''
edges = pd.read_csv(path, header=0)
self.l = edges.columns.values.tolist()
self.l.remove('source')
self.l.remove('target')
self.G = nx.from_pandas_dataframe(edges, 'source', 'target', self.l, create_using=nx.DiGraph())
开发者ID:danjamker,项目名称:UrbanDictonaryMinner,代码行数:7,代码来源:GraphPrep.py
示例9: simple_visualization
def simple_visualization (airport_df, routes_df):
if (airport_df is None) or (routes_df is None):
print "Data cannot be retrieved and read"
else:
airport_us = airport_df[(airport_df.Country == "United States")][['Name','Lat', 'Long', 'IATA', 'ICAO']]
us_airport_ix = airport_us.index.values
routes_us = routes_df[(routes_df['Source Airport ID'].isin(us_airport_ix)) &
(routes_df['Dest Airport ID'].isin(us_airport_ix))] #extract routes that flyies from AND to USA
routes_us = pd.DataFrame(routes_us.groupby(['Source Airport', 'Dest Airport']).size().reset_index(name='counts'))
# to find number of flights in and out of an airport
# it is similar to find number of rows in which each airport occur in either one of the 2 columns
counts = routes_us['Source Airport'].append(routes_us.loc[routes_us['Source Airport'] != routes_us['Dest Airport'], 'Dest Airport']).value_counts()
# create a data frame of position based on names in count
counts = pd.DataFrame({'IATA': counts.index, 'total_flight': counts})
pos_data = counts.merge(airport_us, on = 'IATA')
# Create graph
graph = nx.from_pandas_dataframe(routes_us, source = 'Source Airport', target = 'Dest Airport',
edge_attr = 'counts',create_using = nx.DiGraph())
# default graph using Networkx inbuilt graph tools
plt.figure(figsize = (10,9))
nx.draw_networkx(graph)
plt.savefig("./images/networkx_basemap/map_0.png", format = "png", dpi = 300)
plt.show()
# Set up base map
plt.figure(figsize=(15,20))
m = Basemap(
projection='merc',
llcrnrlon=-180,
llcrnrlat=10,
urcrnrlon=-50,
urcrnrlat=70,
lat_ts=0,
resolution='l',
suppress_ticks=True)
# import long lat as m attribute
mx, my = m(pos_data['Long'].values, pos_data['Lat'].values)
pos = {}
for count, elem in enumerate (pos_data['IATA']):
pos[elem] = (mx[count], my[count])
# draw nodes and edges and over aly on basemap
nx.draw_networkx_nodes(G = graph, pos = pos, node_list = graph.nodes(), node_color = 'r', alpha = 0.8,
node_size = [counts['total_flight'][s]*3 for s in graph.nodes()])
nx.draw_networkx_edges(G = graph, pos = pos, edge_color='g', width = routes_us['counts']*0.75,
alpha=0.2, arrows = False)
m.drawcountries(linewidth = 3)
m.drawstates(linewidth = 0.2)
m.drawcoastlines(linewidth=3)
plt.tight_layout()
plt.savefig("./images/networkx_basemap/map_2.png", format = "png", dpi = 300)
plt.show()
print ("successful visualization")
return 0
开发者ID:rxhmdia,项目名称:Various-projects,代码行数:58,代码来源:flights_networkx.py
示例10: test_from_dataframe_multi_attr
def test_from_dataframe_multi_attr(self,):
Gtrue = nx.Graph(
[
("E", "C", {"cost": 9, "weight": 10}),
("B", "A", {"cost": 1, "weight": 7}),
("A", "D", {"cost": 7, "weight": 4}),
]
)
G = nx.from_pandas_dataframe(self.df, 0, "b", ["weight", "cost"])
self.assert_equal(G, Gtrue)
开发者ID:CrazyPython,项目名称:networkx,代码行数:10,代码来源:test_convert_pandas.py
示例11: make_graph
def make_graph(cutdf):
"""
Convert dataframe of a list of edges into a networkx graph object
Args:
cutdf : pandas dataframe containing list of edges with
features 'source' and 'target' containing node numbers
Returns:
networkx graph object
"""
g = nx.from_pandas_dataframe(cutdf, 'source', 'target')
return g
开发者ID:nhu2000,项目名称:hoodie,代码行数:12,代码来源:clusterize.py
示例12: calculate
def calculate(words):
# instantiate a dictionary to later be filled with word:miscores
wc = defaultdict(float)
frames = []
print("...it will take a while. Wait a sec...")
for word in words:
payload = {'searchstring': word.encode('ascii'),
'searchpositional':'word',
'searchpostag':'all',
'contextsize':'60c',
'sort2':'right',
'terminate':'100',
'searchtype':'coll',
'mistat':'on',
'collocspanleft':'2',
'collocspanright':'2',
'collocfilter':'noun'}
r = requests.get("http://clic.cimec.unitn.it/cgi-bin/cqp/cqp.pl?corpuslist=WEBBIT", params=payload)
soup = BeautifulSoup(r.content, 'lxml')
# parse the html table and extract words and miscores. Add scores
temp = []
for tr in soup.find_all('tr')[1:]:
tds = tr.find_all('td')
word = tds[0].text.split('~~')[1]
mi = float(tds[4].text)
wc[word] += mi
temp.append(map(lambda x:x.text,tds[0:]))
x = pd.DataFrame(temp)
df = pd.DataFrame()
df['coll'] = x.ix[0:,0].apply(lambda x: x.split('~~')[1])
df['word'] = x.ix[0:,0].apply(lambda x: x.split('~~')[0])
df['mi'] = x.ix[0:,4]
frames.append(df)
#sort the results in decreasing order
results = []
for w in sorted(wc, key=wc.get, reverse=True):
results.append((w, wc[w]))
#spit out the top result. If using ipython you can check the rest of the list by tiping `results`
#viz part
results_df = pd.concat(frames)
G=nx.from_pandas_dataframe(results_df, 'word','coll',['mi'])
mat = nx.adjacency_matrix(G).todense()
viz = lgn.force(mat)
vid = viz.id
print(vid)
url = '<iframe src="http://public.lightning-viz.org/visualizations/'+vid+'/iframe/" width=100% height=400px>'
return (results[0][0].strip(),url)
开发者ID:anbasile,项目名称:mwe,代码行数:53,代码来源:words.py
示例13: weightGraph
def weightGraph(self, datacontacts, mi_threshold, time_treshold=0.6):
if len(self.mol.get('resid', 'name CA')) != len(self.resids):
raise Exception('The length of the protein doesn\'t match the Mutual Information data')
contactcat = np.concatenate(datacontacts.dat)
contacts_matrix = np.zeros([len(self.resids), len(self.resids)])
for i in range(contactcat.shape[1]):
counter = np.count_nonzero(contactcat[:, i])
resid1 = self.residmap[self.mol.resid[datacontacts.description.atomIndexes[i][0]]]
resid2 = self.residmap[self.mol.resid[datacontacts.description.atomIndexes[i][1]]]
contacts_matrix[resid1][resid2] = counter
self.graph_array = np.zeros([contacts_matrix.shape[0], contacts_matrix.shape[0]])
mask = (self.mi_matrix > mi_threshold) & (contacts_matrix > (time_treshold * contactcat.shape[0]))
self.graph_array[mask] = self.mi_matrix[mask]
intermed = []
for source in range(self.graph_array.shape[0]):
for target in range(source, self.graph_array.shape[1]):
if self.graph_array[source, target] != 0 and target > source:
intermed.append(
[int(self.resids[source]), int(self.resids[target]), float(self.graph_array[source, target])])
import pandas as pd
import networkx as nx
from sklearn.cluster.spectral import SpectralClustering
pd = pd.DataFrame(intermed, columns=['source', 'target', 'weight'])
pd[['source', 'target']] = pd[['source', 'target']].astype(type('int', (int,), {}))
pd['weight'] = pd['weight'].astype(type('float', (float,), {}))
G = nx.from_pandas_dataframe(pd, 'source', 'target', ['weight'])
## setSegment
segids = self.mol.get('segid', 'name CA')
seg_res_dict = {key: value for (key, value) in zip(self.resids, segids) if
np.any(pd.loc[(pd['source'] == key)].index) or np.any(pd.loc[(pd['target'] == key)].index)}
nx.set_node_attributes(G, 'Segment', seg_res_dict)
## set
if not nx.is_connected(G):
G = max(nx.connected_component_subgraphs(G), key=len)
flow_cent = nx.current_flow_betweenness_centrality(G, weight='weight')
nx.set_node_attributes(G, 'flowcent', flow_cent)
Spectre = SpectralClustering(n_clusters=10, affinity='precomputed')
model = Spectre.fit_predict(self.graph_array)
model = model.astype(type('float', (float,), {}))
spectral_dict = {key: value for (key, value) in zip(self.resids, model) if key in G.nodes()}
nx.set_node_attributes(G, 'spectral', spectral_dict)
self.graph = G
开发者ID:alejandrovr,项目名称:htmd,代码行数:45,代码来源:mutualinformation.py
示例14: corr_to_graph
def corr_to_graph(roi_corrs, copy_corrs=False):
"""
>>> import pandas as pd
>>> import numpy as np
>>> corrs = pd.DataFrame(np.random.rand(2,2))
>>> corrs.index = ['A', 'B']
>>> corrs.columns = ['A', 'B']
>>> graph = corr_to_graph(corrs)
>>> ab = graph['A']['B']
>>> wt, prox, dist = ab['weight'], ab['proximity'], ab['distance']
>>> assert wt == corrs['B']['A'] #upper triangular
>>> assert prox == wt
>>> assert dist == 1 - wt
>>> assert len(graph) == 2
"""
roi_corrs = create_convertible_corr_df(roi_corrs, copy_corrs)
return nx.from_pandas_dataframe(roi_corrs, 'source', 'target',
edge_attr=['distance', 'proximity', 'weight'])
开发者ID:dgclark,项目名称:easton_connectivity,代码行数:18,代码来源:verbal_connectivity.py
示例15: test_from_datafram
def test_from_datafram(self, ):
# Pandas DataFrame
g = nx.cycle_graph(10)
G = nx.Graph()
G.add_nodes_from(g)
G.add_weighted_edges_from((u, v, u) for u, v in g.edges())
edgelist = nx.to_edgelist(G)
source = [s for s, t, d in edgelist]
target = [t for s, t, d in edgelist]
weight = [d['weight'] for s, t, d in edgelist]
import pandas as pd
edges = pd.DataFrame({'source': source,
'target': target,
'weight': weight})
GG = nx.from_pandas_dataframe(edges, edge_attr='weight')
assert_nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
assert_edges_equal(sorted(G.edges()), sorted(GG.edges()))
GW = nx.to_networkx_graph(edges, create_using=nx.Graph())
assert_nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
assert_edges_equal(sorted(G.edges()), sorted(GW.edges()))
开发者ID:jklaise,项目名称:networkx,代码行数:20,代码来源:test_convert_pandas.py
示例16: read_inter_RRI
def read_inter_RRI(inter_RRI=None, filter_rRNA=False, support_read_num=2, only_mRNA_lncRNA=False):
if inter_RRI is None:
inter_RRI = '/Share/home/zhangqf7/gongjing/zebrafish/data/paris/shi-zp-2/27-DG.inter.element.txt'
df_inter_RRI = pd.read_csv(inter_RRI, header=None, sep='\t')
if filter_rRNA:
df_inter_RRI = df_inter_RRI[(df_inter_RRI[13] != 'rRNA') & (df_inter_RRI[14] != 'rRNA')]
if only_mRNA_lncRNA:
only_mRNA_lncRNA_index = (df_inter_RRI[13].isin(['mRNA', 'lncRNA'])) & (df_inter_RRI[14].isin(['mRNA', 'lncRNA']))
df_inter_RRI = df_inter_RRI[only_mRNA_lncRNA_index]
header_ls = ['Group', 'lchr', 'lstrand', 'lstart', 'lend', 'rchr', 'rstrand',
'rstart', 'rend', 'support', 'lcount', 'rcount', 'score', 'ltype', 'rtype', 'RRI_type', 'lcontext', 'rcontext']
df_inter_RRI.columns = header_ls
df_inter_RRI = df_inter_RRI[df_inter_RRI['support'] >= support_read_num]
print df_inter_RRI.head()
nx_inter_RRI = nx.from_pandas_dataframe(df_inter_RRI, 'lchr', 'rchr', edge_attr=['support', 'Group'])
print "\nread: %s"%(inter_RRI)
print nx.info(nx_inter_RRI)
print
return nx_inter_RRI, df_inter_RRI
开发者ID:Tsinghua-gongjing,项目名称:test,代码行数:20,代码来源:paris_merge_network.py
示例17: create_nwrk
def create_nwrk(self,
nodes_cols,
attribs_cols):
"""Return Ortho_Network.nwrk upon pandas.DataFrame.
Parameters
-------
nodes_cols: list
Columns to take as nodes.
attribs_cols: list
Columns to take as attributes.
Returns
-------
P_CRAWLER.Ortho_Network.nwrk
Interactions-based network. networkx.classes.graph.Graph derivate.
"""
self.nwrk = nx.from_pandas_dataframe(self.inter_df,
nodes_cols[0],
nodes_cols[1],
attribs_cols)
开发者ID:dizak,项目名称:P_CRAWLER,代码行数:21,代码来源:network.py
示例18: main
def main():
parser = ArgumentParser()
parser.add_argument("-i", "--infile", type=str,
help="Table with one row per link between families, columns: ['Family1','Family2'].\
If not specified the program reads from stdin.")
parser.add_argument("--maxlink", default=6, type=int,
help="Maximum number of allowed outgoing links (edges) for a single protein family. Defaults to 6")
parser.add_argument("--minoc", default=10, type=int,
help="Minimum number of occurrences for linking two families. Defaults to 10")
parser.add_argument("--trimmed_out", type=str,
help="Write trimmed families to file")
args = parser.parse_args()
if args.infile: linkdf = pd.read_csv(args.infile, sep="\t", header=0)
else: linkdf = pd.read_csv(sys.stdin, sep="\t", header=0)
linkdf.fillna("",inplace=True)
oc = count_occurrences(linkdf)
## Create graph from data frame
g = nx.from_pandas_dataframe(linkdf,source="Node1",target="Node2")
g.remove_node('')
## Trim nodes by outgoing edges and edges by occurrence
[gt,trimmed_nodes,trimmed_edges] = trim_graph(g,args.maxlink, args.minoc, oc)
if args.trimmed_out: pd.DataFrame(trimmed_nodes).to_csv(args.trimmed_out,sep="\t",index=False,header=False)
logging.info("Removed "+str(len(trimmed_edges))+" links due to low occurrence")
logging.info("Removed "+str(len(trimmed_nodes))+" families with too many links ("+str(len(gt.nodes()))+" remaining)")
## Create clusters for graph
clusters = cluster(gt)
logging.info(str(len(clusters))+" clusters created")
cdf = pd.DataFrame(clusters).T
## Sort by number of families in cluster
cdf.sort_values("num",ascending=False,inplace=True)
cdf.index = list(range(1,len(cdf)+1))
## Write clusters sorted by size
write(cdf)
开发者ID:johnne,项目名称:transporters,代码行数:38,代码来源:cluster_families.py
示例19:
# concatenate all these edges from all these events
# and write them to an edgelist.
# append multiple items in one go instead of this
e = e1.append(e2);
e = e.append(e3);
e.to_csv('edges.csv');
# I previously made the perp list by concatenating the perp1 perp2 and perp3 columns
# then taking unique strings
# so supposing we are starting from the point where we had perp and edge lists saved as files already
perp_list = pd.read_csv("perp_list.csv");
edges = pd.read_csv("edges.csv")
# make an empty graph
G=nx.Graph();
# feed it edges
edgelist = nx.from_pandas_dataframe(edges)
# feed it nodes
G.add_nodes_from(perp_list);
# [Commenting this code so late that I forgot what this does. To be filled in later.]
test = e.replace(to_replace=perp_list, )
# quantification of categorical traits
# recalling what we have...
print("Total rows: {0}".format(len(data)));
print(list(data));
# quantify the traits. 1 is least governmental, 3 is most.
data = data.replace(to_replace='Private Citizens & Property', value=1);
data = data.replace(to_replace='Journalists & Media', value=1);
data = data.replace(to_replace='Educational Institution', value=1);
data = data.replace(to_replace='Abortion Related', value=1);
开发者ID:Zarrindast,项目名称:Terror,代码行数:31,代码来源:terrorsheetprocessing.py
示例20: get_coastline_traces
# add plot.ly plotting options
traces.append(make_scatter(lon_cc,lat_cc))
return traces
def get_coastline_traces():
poly_paths = m.drawcoastlines().get_paths() # coastline polygon paths
N_poly = 91 # use only the 91st biggest coastlines (i.e. no rivers)
return polygons_to_traces(poly_paths, N_poly)
traces_cc = get_coastline_traces()
############################## FRAME ABOVE FOR MAP, FRAME BELOW FOR NODES
G=nx.from_pandas_dataframe(latLonPopulated_RT, source='tweetId',target='retweeter')
pos = {}
color = {}
for i,tweet in latLonPopulated_RT.iterrows():
pos[tweet['tweetId'].upper()] = np.asarray([tweet['x'],tweet['y']])
pos[tweet['retweeter'].upper()] = np.asarray([tweet['x'],tweet['y']])
color[tweet['tweetId'].upper()] = tweet['node_color']
color[tweet['retweeter'].upper()] = tweet['node_color']
for n,p in pos.iteritems():
G.node[n]['pos'] = p
for n,c in color.iteritems():
G.node[n]['color'] = c
开发者ID:phiaseitz,项目名称:DataScience16CTW,代码行数:30,代码来源:nodes_for_notebook.py
注:本文中的networkx.from_pandas_dataframe函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论