• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python cov.regularize函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.cov.regularize函数的典型用法代码示例。如果您正苦于以下问题:Python regularize函数的具体用法?Python regularize怎么用?Python regularize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了regularize函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_gamma_map

def test_gamma_map():
    """Test Gamma MAP inverse"""
    forward = read_forward_solution(fname_fwd)
    forward = convert_forward_solution(forward, surf_ori=True)

    forward = pick_types_forward(forward, meg=False, eeg=True)
    evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0),
                          proj=False)
    evoked.resample(50, npad=100)
    evoked.crop(tmin=0.1, tmax=0.16)  # crop to window around peak

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info)

    alpha = 0.5
    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                    xyz_same_gamma=True, update_mode=1)
    _check_stc(stc, evoked, 68477)

    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=1)
    _check_stc(stc, evoked, 82010)

    dips = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                     xyz_same_gamma=False, update_mode=1,
                     return_as_dipoles=True)
    assert_true(isinstance(dips[0], Dipole))
    stc_dip = make_stc_from_dipoles(dips, forward['src'])
    _check_stcs(stc, stc_dip)

    # force fixed orientation
    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=2,
                    loose=0, return_residual=False)
    _check_stc(stc, evoked, 85739, 20)
开发者ID:nfoti,项目名称:mne-python,代码行数:35,代码来源:test_gamma_map.py


示例2: test_gamma_map

def test_gamma_map():
    """Test Gamma MAP inverse"""
    forward = read_forward_solution(fname_fwd, force_fixed=False,
                                    surf_ori=True)
    forward = pick_types_forward(forward, meg=False, eeg=True)
    evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0),
                          proj=False)
    evoked.resample(50, npad=100)
    evoked.crop(tmin=0.1, tmax=0.16)  # crop to nice window near samp border

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info)

    alpha = 0.5
    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                    xyz_same_gamma=True, update_mode=1)
    _check_stc(stc, evoked, 68477)

    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=1)
    _check_stc(stc, evoked, 82010)

    # force fixed orientation
    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=2,
                    loose=None, return_residual=False)
    _check_stc(stc, evoked, 85739, 20)
开发者ID:EmanuelaLiaci,项目名称:mne-python,代码行数:27,代码来源:test_gamma_map.py


示例3: test_gamma_map_vol_sphere

def test_gamma_map_vol_sphere():
    """Gamma MAP with a sphere forward and volumic source space"""
    evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0),
                          proj=False)
    evoked.resample(50, npad=100)
    evoked.crop(tmin=0.1, tmax=0.16)  # crop to window around peak

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info)

    info = evoked.info
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=15., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 80.0),
                                        bem=None, mindist=5.0,
                                        exclude=2.0)
    fwd = mne.make_forward_solution(info, trans=None, src=src, bem=sphere,
                                    eeg=False, meg=True)

    alpha = 0.5
    assert_raises(ValueError, gamma_map, evoked, fwd, cov, alpha,
                  loose=0, return_residual=False)

    assert_raises(ValueError, gamma_map, evoked, fwd, cov, alpha,
                  loose=0.2, return_residual=False)

    stc = gamma_map(evoked, fwd, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=2,
                    return_residual=False)

    assert_array_almost_equal(stc.times, evoked.times, 5)
开发者ID:nfoti,项目名称:mne-python,代码行数:31,代码来源:test_gamma_map.py


示例4: test_gamma_map

def test_gamma_map():
    """Test Gamma MAP inverse"""
    forward = read_forward_solution(fname_fwd, force_fixed=False,
                                    surf_ori=True)
    forward = pick_types_forward(forward, meg=False, eeg=True)
    evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0))
    evoked.resample(50)
    evoked.crop(tmin=0, tmax=0.3)

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info)

    alpha = 0.2
    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-5,
                    xyz_same_gamma=True, update_mode=1, verbose=False)
    idx = np.argmax(np.sum(stc.data ** 2, axis=1))
    assert_true(np.concatenate(stc.vertices)[idx] == 96397)

    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-5,
                    xyz_same_gamma=False, update_mode=1, verbose=False)
    idx = np.argmax(np.sum(stc.data ** 2, axis=1))
    assert_true(np.concatenate(stc.vertices)[idx] == 82010)

    # force fixed orientation
    stc, res = gamma_map(evoked, forward, cov, alpha, tol=1e-5,
                         xyz_same_gamma=False, update_mode=2,
                         loose=None, return_residual=True, verbose=False)
    idx = np.argmax(np.sum(stc.data ** 2, axis=1))
    # assert_true(np.concatenate(stc.vertices)[idx] == 83398)  # XXX FIX
    assert_array_almost_equal(evoked.times, res.times)
开发者ID:pombreda,项目名称:mne-python,代码行数:30,代码来源:test_gamma_map.py


示例5: test_cov_order

def test_cov_order():
    """Test covariance ordering."""
    raw = read_raw_fif(raw_fname)
    raw.set_eeg_reference(projection=True)
    info = raw.info
    # add MEG channel with low enough index number to affect EEG if
    # order is incorrect
    info['bads'] += ['MEG 0113']
    ch_names = [info['ch_names'][pick]
                for pick in pick_types(info, meg=False, eeg=True)]
    cov = read_cov(cov_fname)
    # no avg ref present warning
    prepare_noise_cov(cov, info, ch_names, verbose='error')
    # big reordering
    cov_reorder = cov.copy()
    order = np.random.RandomState(0).permutation(np.arange(len(cov.ch_names)))
    cov_reorder['names'] = [cov['names'][ii] for ii in order]
    cov_reorder['data'] = cov['data'][order][:, order]
    # Make sure we did this properly
    _assert_reorder(cov_reorder, cov, order)
    # Now check some functions that should get the same result for both
    # regularize
    with pytest.raises(ValueError, match='rank, if str'):
        regularize(cov, info, rank='foo')
    with pytest.raises(TypeError, match='rank must be'):
        regularize(cov, info, rank=False)
    with pytest.raises(TypeError, match='rank must be'):
        regularize(cov, info, rank=1.)
    cov_reg = regularize(cov, info, rank='full')
    cov_reg_reorder = regularize(cov_reorder, info, rank='full')
    _assert_reorder(cov_reg_reorder, cov_reg, order)
    # prepare_noise_cov
    cov_prep = prepare_noise_cov(cov, info, ch_names)
    cov_prep_reorder = prepare_noise_cov(cov, info, ch_names)
    _assert_reorder(cov_prep, cov_prep_reorder,
                    order=np.arange(len(cov_prep['names'])))
    # compute_whitener
    whitener, w_ch_names, n_nzero = compute_whitener(
        cov, info, return_rank=True)
    assert whitener.shape[0] == whitener.shape[1]
    whitener_2, w_ch_names_2, n_nzero_2 = compute_whitener(
        cov_reorder, info, return_rank=True)
    assert_array_equal(w_ch_names_2, w_ch_names)
    assert_allclose(whitener_2, whitener)
    assert n_nzero == n_nzero_2
    # with pca
    assert n_nzero < whitener.shape[0]
    whitener_pca, w_ch_names_pca, n_nzero_pca = compute_whitener(
        cov, info, pca=True, return_rank=True)
    assert_array_equal(w_ch_names_pca, w_ch_names)
    assert n_nzero_pca == n_nzero
    assert whitener_pca.shape == (n_nzero_pca, len(w_ch_names))
    # whiten_evoked
    evoked = read_evokeds(ave_fname)[0]
    evoked_white = whiten_evoked(evoked, cov)
    evoked_white_2 = whiten_evoked(evoked, cov_reorder)
    assert_allclose(evoked_white_2.data, evoked_white.data)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:57,代码来源:test_cov.py


示例6: test_bad_proj

def test_bad_proj():
    """Test dealing with bad projection application."""
    raw = read_raw_fif(raw_fname, preload=True)
    events = read_events(event_fname)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[2:18:3]
    _check_warnings(raw, events, picks)
    # still bad
    raw.pick_channels([raw.ch_names[ii] for ii in picks])
    _check_warnings(raw, events)
    # "fixed"
    raw.info.normalize_proj()  # avoid projection warnings
    _check_warnings(raw, events, count=0)
    # eeg avg ref is okay
    raw = read_raw_fif(raw_fname, preload=True).pick_types(meg=False, eeg=True)
    raw.set_eeg_reference(projection=True)
    _check_warnings(raw, events, count=0)
    raw.info['bads'] = raw.ch_names[:10]
    _check_warnings(raw, events, count=0)

    raw = read_raw_fif(raw_fname)
    pytest.raises(ValueError, raw.del_proj, 'foo')
    n_proj = len(raw.info['projs'])
    raw.del_proj(0)
    assert_equal(len(raw.info['projs']), n_proj - 1)
    raw.del_proj()
    assert_equal(len(raw.info['projs']), 0)

    # Ensure we deal with newer-style Neuromag projs properly, were getting:
    #
    #     Projection vector "PCA-v2" has magnitude 1.00 (should be unity),
    #     applying projector with 101/306 of the original channels available
    #     may be dangerous.
    raw = read_raw_fif(raw_fname).crop(0, 1)
    raw.set_eeg_reference(projection=True)
    raw.info['bads'] = ['MEG 0111']
    meg_picks = pick_types(raw.info, meg=True, exclude=())
    ch_names = [raw.ch_names[pick] for pick in meg_picks]
    for p in raw.info['projs'][:-1]:
        data = np.zeros((1, len(ch_names)))
        idx = [ch_names.index(ch_name) for ch_name in p['data']['col_names']]
        data[:, idx] = p['data']['data']
        p['data'].update(ncol=len(meg_picks), col_names=ch_names, data=data)
    # smoke test for no warnings during reg
    regularize(compute_raw_covariance(raw, verbose='error'), raw.info)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:46,代码来源:test_proj.py


示例7: test_simulate_evoked

def test_simulate_evoked():
    """Test simulation of evoked data."""

    raw = read_raw_fif(raw_fname)
    fwd = read_forward_solution(fwd_fname)
    fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=False)
    fwd = pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads'])
    cov = read_cov(cov_fname)

    evoked_template = read_evokeds(ave_fname, condition=0, baseline=None)
    evoked_template.pick_types(meg=True, eeg=True, exclude=raw.info['bads'])

    cov = regularize(cov, evoked_template.info)
    nave = evoked_template.nave

    tmin = -0.1
    sfreq = 1000.  # Hz
    tstep = 1. / sfreq
    n_samples = 600
    times = np.linspace(tmin, tmin + n_samples * tstep, n_samples)

    # Generate times series for 2 dipoles
    stc = simulate_sparse_stc(fwd['src'], n_dipoles=2, times=times,
                              random_state=42)

    # Generate noisy evoked data
    iir_filter = [1, -0.9]
    evoked = simulate_evoked(fwd, stc, evoked_template.info, cov,
                             iir_filter=iir_filter, nave=nave)
    assert_array_almost_equal(evoked.times, stc.times)
    assert_true(len(evoked.data) == len(fwd['sol']['data']))
    assert_equal(evoked.nave, nave)

    # make a vertex that doesn't exist in fwd, should throw error
    stc_bad = stc.copy()
    mv = np.max(fwd['src'][0]['vertno'][fwd['src'][0]['inuse']])
    stc_bad.vertices[0][0] = mv + 1

    assert_raises(RuntimeError, simulate_evoked, fwd, stc_bad,
                  evoked_template.info, cov)
    evoked_1 = simulate_evoked(fwd, stc, evoked_template.info, cov,
                               nave=np.inf)
    evoked_2 = simulate_evoked(fwd, stc, evoked_template.info, cov,
                               nave=np.inf)
    assert_array_equal(evoked_1.data, evoked_2.data)

    # Test the equivalence snr to nave
    with warnings.catch_warnings(record=True):  # deprecation
        evoked = simulate_evoked(fwd, stc, evoked_template.info, cov,
                                 snr=6, random_state=42)
    assert_allclose(np.linalg.norm(evoked.data, ord='fro'),
                    0.00078346820226502716)

    cov['names'] = cov.ch_names[:-2]  # Error channels are different.
    assert_raises(ValueError, simulate_evoked, fwd, stc, evoked_template.info,
                  cov, nave=nave, iir_filter=None)
开发者ID:nfoti,项目名称:mne-python,代码行数:56,代码来源:test_evoked.py


示例8: test_regularize_cov

def test_regularize_cov():
    """Test cov regularization
    """
    noise_cov = read_cov(cov_fname)
    # Regularize noise cov
    reg_noise_cov = regularize(noise_cov, raw.info,
                               mag=0.1, grad=0.1, eeg=0.1, proj=True)
    assert_true(noise_cov['dim'] == reg_noise_cov['dim'])
    assert_true(noise_cov['data'].shape == reg_noise_cov['data'].shape)
    assert_true(np.mean(noise_cov['data'] < reg_noise_cov['data']) < 0.08)
开发者ID:starzynski,项目名称:mne-python,代码行数:10,代码来源:test_cov.py


示例9: test_regularize_cov

def test_regularize_cov():
    """Test cov regularization."""
    raw = read_raw_fif(raw_fname, preload=False, add_eeg_ref=False)
    raw.info["bads"].append(raw.ch_names[0])  # test with bad channels
    noise_cov = read_cov(cov_fname)
    # Regularize noise cov
    reg_noise_cov = regularize(noise_cov, raw.info, mag=0.1, grad=0.1, eeg=0.1, proj=True, exclude="bads")
    assert_true(noise_cov["dim"] == reg_noise_cov["dim"])
    assert_true(noise_cov["data"].shape == reg_noise_cov["data"].shape)
    assert_true(np.mean(noise_cov["data"] < reg_noise_cov["data"]) < 0.08)
开发者ID:joewalter,项目名称:mne-python,代码行数:10,代码来源:test_cov.py


示例10: test_regularize_cov

def test_regularize_cov():
    """Test cov regularization."""
    raw = read_raw_fif(raw_fname)
    raw.info['bads'].append(raw.ch_names[0])  # test with bad channels
    noise_cov = read_cov(cov_fname)
    # Regularize noise cov
    reg_noise_cov = regularize(noise_cov, raw.info,
                               mag=0.1, grad=0.1, eeg=0.1, proj=True,
                               exclude='bads')
    assert_true(noise_cov['dim'] == reg_noise_cov['dim'])
    assert_true(noise_cov['data'].shape == reg_noise_cov['data'].shape)
    assert_true(np.mean(noise_cov['data'] < reg_noise_cov['data']) < 0.08)
开发者ID:olafhauk,项目名称:mne-python,代码行数:12,代码来源:test_cov.py


示例11: test_simulate_evoked

def test_simulate_evoked():
    """Test simulation of evoked data."""
    raw = read_raw_fif(raw_fname)
    fwd = read_forward_solution(fwd_fname)
    fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=False)
    fwd = pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads'])
    cov = read_cov(cov_fname)

    evoked_template = read_evokeds(ave_fname, condition=0, baseline=None)
    evoked_template.pick_types(meg=True, eeg=True, exclude=raw.info['bads'])

    cov = regularize(cov, evoked_template.info)
    nave = evoked_template.nave

    tmin = -0.1
    sfreq = 1000.  # Hz
    tstep = 1. / sfreq
    n_samples = 600
    times = np.linspace(tmin, tmin + n_samples * tstep, n_samples)

    # Generate times series for 2 dipoles
    stc = simulate_sparse_stc(fwd['src'], n_dipoles=2, times=times,
                              random_state=42)

    # Generate noisy evoked data
    iir_filter = [1, -0.9]
    evoked = simulate_evoked(fwd, stc, evoked_template.info, cov,
                             iir_filter=iir_filter, nave=nave)
    assert_array_almost_equal(evoked.times, stc.times)
    assert len(evoked.data) == len(fwd['sol']['data'])
    assert_equal(evoked.nave, nave)
    assert len(evoked.info['projs']) == len(cov['projs'])
    evoked_white = whiten_evoked(evoked, cov)
    assert abs(evoked_white.data[:, 0].std() - 1.) < 0.1

    # make a vertex that doesn't exist in fwd, should throw error
    stc_bad = stc.copy()
    mv = np.max(fwd['src'][0]['vertno'][fwd['src'][0]['inuse']])
    stc_bad.vertices[0][0] = mv + 1

    pytest.raises(RuntimeError, simulate_evoked, fwd, stc_bad,
                  evoked_template.info, cov)
    evoked_1 = simulate_evoked(fwd, stc, evoked_template.info, cov,
                               nave=np.inf)
    evoked_2 = simulate_evoked(fwd, stc, evoked_template.info, cov,
                               nave=np.inf)
    assert_array_equal(evoked_1.data, evoked_2.data)

    cov['names'] = cov.ch_names[:-2]  # Error channels are different.
    with pytest.raises(RuntimeError, match='Not all channels present'):
        simulate_evoked(fwd, stc, evoked_template.info, cov)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:51,代码来源:test_evoked.py


示例12: test_cov_order

def test_cov_order():
    """Test covariance ordering."""
    info = read_info(raw_fname)
    # add MEG channel with low enough index number to affect EEG if
    # order is incorrect
    info['bads'] += ['MEG 0113']
    ch_names = [info['ch_names'][pick]
                for pick in pick_types(info, meg=False, eeg=True)]
    cov = read_cov(cov_fname)
    # no avg ref present warning
    prepare_noise_cov(cov, info, ch_names, verbose='error')
    # big reordering
    cov_reorder = cov.copy()
    order = np.random.RandomState(0).permutation(np.arange(len(cov.ch_names)))
    cov_reorder['names'] = [cov['names'][ii] for ii in order]
    cov_reorder['data'] = cov['data'][order][:, order]
    # Make sure we did this properly
    _assert_reorder(cov_reorder, cov, order)
    # Now check some functions that should get the same result for both
    # regularize
    cov_reg = regularize(cov, info)
    cov_reg_reorder = regularize(cov_reorder, info)
    _assert_reorder(cov_reg_reorder, cov_reg, order)
    # prepare_noise_cov
    cov_prep = prepare_noise_cov(cov, info, ch_names)
    cov_prep_reorder = prepare_noise_cov(cov, info, ch_names)
    _assert_reorder(cov_prep, cov_prep_reorder,
                    order=np.arange(len(cov_prep['names'])))
    # compute_whitener
    whitener, w_ch_names = compute_whitener(cov, info)
    whitener_2, w_ch_names_2 = compute_whitener(cov_reorder, info)
    assert_array_equal(w_ch_names_2, w_ch_names)
    assert_allclose(whitener_2, whitener)
    # whiten_evoked
    evoked = read_evokeds(ave_fname)[0]
    evoked_white = whiten_evoked(evoked, cov)
    evoked_white_2 = whiten_evoked(evoked, cov_reorder)
    assert_allclose(evoked_white_2.data, evoked_white.data)
开发者ID:jdammers,项目名称:mne-python,代码行数:38,代码来源:test_cov.py


示例13: test_regularize_cov

def test_regularize_cov():
    """Test cov regularization."""
    raw = read_raw_fif(raw_fname)
    raw.info['bads'].append(raw.ch_names[0])  # test with bad channels
    noise_cov = read_cov(cov_fname)
    # Regularize noise cov
    reg_noise_cov = regularize(noise_cov, raw.info,
                               mag=0.1, grad=0.1, eeg=0.1, proj=True,
                               exclude='bads')
    assert noise_cov['dim'] == reg_noise_cov['dim']
    assert noise_cov['data'].shape == reg_noise_cov['data'].shape
    assert np.mean(noise_cov['data'] < reg_noise_cov['data']) < 0.08
    # make sure all args are represented
    assert set(_DATA_CH_TYPES_SPLIT) - set(_get_args(regularize)) == set()
开发者ID:jdammers,项目名称:mne-python,代码行数:14,代码来源:test_cov.py


示例14: test_gamma_map_vol_sphere

def test_gamma_map_vol_sphere():
    """Gamma MAP with a sphere forward and volumic source space."""
    evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0),
                          proj=False)
    evoked.resample(50, npad=100)
    evoked.crop(tmin=0.1, tmax=0.16)  # crop to window around peak

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info, rank=None)

    info = evoked.info
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=30., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 80.0),
                                        bem=None, mindist=5.0,
                                        exclude=2.0)
    fwd = mne.make_forward_solution(info, trans=None, src=src, bem=sphere,
                                    eeg=False, meg=True)

    alpha = 0.5
    pytest.raises(ValueError, gamma_map, evoked, fwd, cov, alpha,
                  loose=0, return_residual=False)

    pytest.raises(ValueError, gamma_map, evoked, fwd, cov, alpha,
                  loose=0.2, return_residual=False)

    stc = gamma_map(evoked, fwd, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=2,
                    return_residual=False)

    assert_array_almost_equal(stc.times, evoked.times, 5)

    # Compare orientation obtained using fit_dipole and gamma_map
    # for a simulated evoked containing a single dipole
    stc = mne.VolSourceEstimate(50e-9 * np.random.RandomState(42).randn(1, 4),
                                vertices=stc.vertices[:1],
                                tmin=stc.tmin,
                                tstep=stc.tstep)
    evoked_dip = mne.simulation.simulate_evoked(fwd, stc, info, cov, nave=1e9,
                                                use_cps=True)

    dip_gmap = gamma_map(evoked_dip, fwd, cov, 0.1, return_as_dipoles=True)

    amp_max = [np.max(d.amplitude) for d in dip_gmap]
    dip_gmap = dip_gmap[np.argmax(amp_max)]
    assert (dip_gmap[0].pos[0] in src[0]['rr'][stc.vertices])

    dip_fit = mne.fit_dipole(evoked_dip, cov, sphere)[0]
    assert (np.abs(np.dot(dip_fit.ori[0], dip_gmap.ori[0])) > 0.99)
开发者ID:jhouck,项目名称:mne-python,代码行数:49,代码来源:test_gamma_map.py


示例15: test_evoked_whiten

def test_evoked_whiten():
    """Test whitening of evoked data"""
    evoked = Evoked(ave_fname, setno=0, baseline=(None, 0), proj=True)
    cov = read_cov(cov_fname)

    ###########################################################################
    # Show result
    picks = pick_types(evoked.info, meg=True, eeg=True, exclude='bads')

    noise_cov = regularize(cov, evoked.info, grad=0.1, mag=0.1, eeg=0.1)

    evoked_white = whiten_evoked(evoked, noise_cov, picks, diag=True)
    whiten_baseline_data = evoked_white.data[picks][:, evoked.times < 0]
    mean_baseline = np.mean(np.abs(whiten_baseline_data), axis=1)
    assert_true(np.all(mean_baseline < 1.))
    assert_true(np.all(mean_baseline > 0.2))
开发者ID:emanuele,项目名称:mne-python,代码行数:16,代码来源:test_cov.py


示例16: _get_data

def _get_data(ch_decim=1):
    """Read in data used in tests."""
    # Read evoked
    evoked = mne.read_evokeds(fname_ave, 0, baseline=(None, 0))
    evoked.info['bads'] = ['MEG 2443']
    evoked.info['lowpass'] = 20  # fake for decim
    evoked.decimate(12)
    evoked.crop(0.0, 0.3)
    picks = mne.pick_types(evoked.info, meg=True, eeg=False)
    picks = picks[::ch_decim]
    evoked.pick_channels([evoked.ch_names[pick] for pick in picks])
    evoked.info.normalize_proj()

    noise_cov = mne.read_cov(fname_cov)
    noise_cov['projs'] = []
    noise_cov = regularize(noise_cov, evoked.info)
    return evoked, noise_cov
开发者ID:olafhauk,项目名称:mne-python,代码行数:17,代码来源:test_rap_music.py


示例17: test_whiten_evoked

def test_whiten_evoked():
    """Test whitening of evoked data."""
    evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0), proj=True)
    cov = read_cov(cov_fname)

    ###########################################################################
    # Show result
    picks = pick_types(evoked.info, meg=True, eeg=True, ref_meg=False, exclude="bads")

    noise_cov = regularize(cov, evoked.info, grad=0.1, mag=0.1, eeg=0.1, exclude="bads")

    evoked_white = whiten_evoked(evoked, noise_cov, picks, diag=True)
    whiten_baseline_data = evoked_white.data[picks][:, evoked.times < 0]
    mean_baseline = np.mean(np.abs(whiten_baseline_data), axis=1)
    assert_true(np.all(mean_baseline < 1.0))
    assert_true(np.all(mean_baseline > 0.2))

    # degenerate
    cov_bad = pick_channels_cov(cov, include=evoked.ch_names[:10])
    assert_raises(RuntimeError, whiten_evoked, evoked, cov_bad, picks)
开发者ID:joewalter,项目名称:mne-python,代码行数:20,代码来源:test_cov.py


示例18: test_rank_deficiency

def test_rank_deficiency():
    """Test adding noise from M/EEG float32 (I/O) cov with projectors."""
    # See gh-5940
    evoked = read_evokeds(ave_fname, 0, baseline=(None, 0))
    evoked.info['bads'] = ['MEG 2443']
    evoked.info['lowpass'] = 20  # fake for decim
    picks = pick_types(evoked.info, meg=True, eeg=False)
    picks = picks[::16]
    evoked.pick_channels([evoked.ch_names[pick] for pick in picks])
    evoked.info.normalize_proj()
    cov = read_cov(cov_fname)
    cov['projs'] = []
    cov = regularize(cov, evoked.info, rank=None)
    cov = pick_channels_cov(cov, evoked.ch_names)
    evoked.data[:] = 0
    add_noise(evoked, cov)
    cov_new = compute_covariance(
        EpochsArray(evoked.data[np.newaxis], evoked.info), verbose='error')
    assert cov['names'] == cov_new['names']
    r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
    assert r > 0.98
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:21,代码来源:test_evoked.py


示例19: print

print(__doc__)

from mne import read_cov, whiten_evoked, pick_types, read_evokeds
from mne.cov import regularize
from mne.datasets import sample

data_path = sample.data_path()

fname = data_path + '/MEG/sample/sample_audvis-ave.fif'
cov_fname = data_path + '/MEG/sample/sample_audvis-cov.fif'

# Reading
evoked = read_evokeds(fname, condition=0, baseline=(None, 0), proj=True)
noise_cov = read_cov(cov_fname)

###############################################################################
# Show result

  # Pick channels to view
picks = pick_types(evoked.info, meg=True, eeg=True, exclude='bads')
evoked.plot(picks=picks)

noise_cov = regularize(noise_cov, evoked.info, grad=0.1, mag=0.1, eeg=0.1)

evoked_white = whiten_evoked(evoked, noise_cov, picks, diag=True)

# plot the whitened evoked data to see if baseline signals match the
# assumption of Gaussian whiten noise from which we expect values around
# and less than 2 standard deviations.
evoked_white.plot(picks=picks, unit=False, hline=[-2, 2])
开发者ID:LizetteH,项目名称:mne-python,代码行数:30,代码来源:plot_evoked_whitening.py


示例20: test_low_rank_cov

def test_low_rank_cov(raw_epochs_events):
    """Test additional properties of low rank computations."""
    raw, epochs, events = raw_epochs_events
    sss_proj_rank = 139  # 80 MEG + 60 EEG - 1 proj
    n_ch = 366
    proj_rank = 365  # one EEG proj
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        emp_cov = compute_covariance(epochs)
    # Test equivalence with mne.cov.regularize subspace
    with pytest.raises(ValueError, match='are dependent.*must equal'):
        regularize(emp_cov, epochs.info, rank=None, mag=0.1, grad=0.2)
    assert _cov_rank(emp_cov, epochs.info) == sss_proj_rank
    reg_cov = regularize(emp_cov, epochs.info, proj=True, rank='full')
    assert _cov_rank(reg_cov, epochs.info) == proj_rank
    with pytest.warns(RuntimeWarning, match='exceeds the theoretical'):
        _compute_rank_int(reg_cov, info=epochs.info)
    del reg_cov
    with catch_logging() as log:
        reg_r_cov = regularize(emp_cov, epochs.info, proj=True, rank=None,
                               verbose=True)
    log = log.getvalue()
    assert 'jointly' in log
    assert _cov_rank(reg_r_cov, epochs.info) == sss_proj_rank
    reg_r_only_cov = regularize(emp_cov, epochs.info, proj=False, rank=None)
    assert _cov_rank(reg_r_only_cov, epochs.info) == sss_proj_rank
    assert_allclose(reg_r_only_cov['data'], reg_r_cov['data'])
    del reg_r_only_cov, reg_r_cov

    # test that rank=306 is same as rank='full'
    epochs_meg = epochs.copy().pick_types()
    assert len(epochs_meg.ch_names) == 306
    epochs_meg.info.update(bads=[], projs=[])
    cov_full = compute_covariance(epochs_meg, method='oas',
                                  rank='full', verbose='error')
    assert _cov_rank(cov_full, epochs_meg.info) == 306
    with pytest.deprecated_call(match='int is deprecated'):
        cov_dict = compute_covariance(epochs_meg, method='oas', rank=306)
    assert _cov_rank(cov_dict, epochs_meg.info) == 306
    assert_allclose(cov_full['data'], cov_dict['data'])
    cov_dict = compute_covariance(epochs_meg, method='oas',
                                  rank=dict(meg=306), verbose='error')
    assert _cov_rank(cov_dict, epochs_meg.info) == 306
    assert_allclose(cov_full['data'], cov_dict['data'])

    # Work with just EEG data to simplify projection / rank reduction
    raw = raw.copy().pick_types(meg=False, eeg=True)
    n_proj = 2
    raw.add_proj(compute_proj_raw(raw, n_eeg=n_proj))
    n_ch = len(raw.ch_names)
    rank = n_ch - n_proj - 1  # plus avg proj
    assert len(raw.info['projs']) == 3
    epochs = Epochs(raw, events, tmin=-0.2, tmax=0, preload=True)
    assert len(raw.ch_names) == n_ch
    emp_cov = compute_covariance(epochs, rank='full', verbose='error')
    assert _cov_rank(emp_cov, epochs.info) == rank
    reg_cov = regularize(emp_cov, epochs.info, proj=True, rank='full')
    assert _cov_rank(reg_cov, epochs.info) == rank
    reg_r_cov = regularize(emp_cov, epochs.info, proj=False, rank=None)
    assert _cov_rank(reg_r_cov, epochs.info) == rank
    dia_cov = compute_covariance(epochs, rank=None, method='diagonal_fixed',
                                 verbose='error')
    assert _cov_rank(dia_cov, epochs.info) == rank
    assert_allclose(dia_cov['data'], reg_cov['data'])
    # test our deprecation: can simply remove later
    epochs.pick_channels(epochs.ch_names[:103])
    # degenerate
    with pytest.raises(ValueError, match='can.*only be used with rank="full"'):
        compute_covariance(epochs, rank=None, method='pca')
    with pytest.raises(ValueError, match='can.*only be used with rank="full"'):
        compute_covariance(epochs, rank=None, method='factor_analysis')
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:70,代码来源:test_cov.py



注:本文中的mne.cov.regularize函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python sample.data_path函数代码示例发布时间:2022-05-27
下一篇:
Python cov.read_cov函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap