本文整理汇总了Python中mne.cov.read_cov函数的典型用法代码示例。如果您正苦于以下问题:Python read_cov函数的具体用法?Python read_cov怎么用?Python read_cov使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了read_cov函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: load
def load(typ, subject='fsaverage', analysis='analysis', block=999,
download=True, preload=False):
"""Auxiliary saving function."""
# get file name
fname = paths(typ, subject=subject, analysis=analysis, block=block)
# check if file exists
if not op.exists(fname) and download:
client.download(fname)
# different data format depending file type
if typ == 'behavior':
from base import read_events
out = read_events(fname)
elif typ == 'sss':
out = Raw(fname, preload=preload)
elif typ in ['epo_block', 'epochs', 'epochs_decim', 'epochs_vhp']:
out = read_epochs(fname, preload=preload)
elif typ in ['cov']:
from mne.cov import read_cov
out = read_cov(fname)
elif typ in ['fwd']:
from mne import read_forward_solution
out = read_forward_solution(fname, surf_ori=True)
elif typ in ['inv']:
from mne.minimum_norm import read_inverse_operator
out = read_inverse_operator(fname)
elif typ in ['evoked', 'decod', 'decod_tfr', 'score', 'score_tfr',
'evoked_source']:
with open(fname, 'rb') as f:
out = pickle.load(f)
elif typ == 'morph':
from scipy.sparse import csr_matrix
loader = np.load(fname)
out = csr_matrix((loader['data'], loader['indices'], loader['indptr']),
shape=loader['shape'])
elif typ in ['score_source', 'score_pval']:
out = np.load(fname)
else:
raise NotImplementedError()
return out
开发者ID:kingjr,项目名称:decoding_unconscious_maintenance,代码行数:41,代码来源:config.py
示例2: test_ica_additional
def test_ica_additional():
"""Test additional ICA functionality"""
tempdir = _TempDir()
stop2 = 500
raw = Raw(raw_fname).crop(1.5, stop, False)
raw.load_data()
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
test_cov = read_cov(test_cov_name)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
# test if n_components=None works
with warnings.catch_warnings(record=True):
ica = ICA(n_components=None,
max_pca_components=None,
n_pca_components=None, random_state=0)
ica.fit(epochs, picks=picks, decim=3)
# for testing eog functionality
picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=True, exclude='bads')
epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
baseline=(None, 0), preload=True)
test_cov2 = test_cov.copy()
ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
n_pca_components=4)
assert_true(ica.info is None)
with warnings.catch_warnings(record=True):
ica.fit(raw, picks[:5])
assert_true(isinstance(ica.info, Info))
assert_true(ica.n_components_ < 5)
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
assert_raises(RuntimeError, ica.save, '')
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2)
# test corrmap
ica2 = ica.copy()
corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
ch_type="mag")
corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False)
assert_true(ica.labels_["blinks"] == ica2.labels_["blinks"])
assert_true(0 in ica.labels_["blinks"])
plt.close('all')
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
ica.save(ica_badname)
read_ica(ica_badname)
assert_naming(w, 'test_ica.py', 2)
# test decim
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
raw_ = raw.copy()
for _ in range(3):
raw_.append(raw_)
n_samples = raw_._data.shape[1]
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=None, decim=3)
assert_true(raw_._data.shape[1], n_samples)
# test expl var
ica = ICA(n_components=1.0, max_pca_components=4,
n_pca_components=4)
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=None, decim=3)
assert_true(ica.n_components_ == 4)
# epochs extraction from raw fit
assert_raises(RuntimeError, ica.get_sources, epochs)
# test reading and writing
test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
for cov in (None, test_cov):
ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
n_pca_components=4)
with warnings.catch_warnings(record=True): # ICA does not converge
ica.fit(raw, picks=picks, start=start, stop=stop2)
sources = ica.get_sources(epochs).get_data()
assert_true(ica.mixing_matrix_.shape == (2, 2))
assert_true(ica.unmixing_matrix_.shape == (2, 2))
assert_true(ica.pca_components_.shape == (4, len(picks)))
assert_true(sources.shape[1] == ica.n_components_)
for exclude in [[], [0]]:
ica.exclude = [0]
ica.labels_ = {'foo': [0]}
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.exclude == ica_read.exclude)
assert_equal(ica.labels_, ica_read.labels_)
ica.exclude = []
ica.apply(raw, exclude=[1])
#.........这里部分代码省略.........
开发者ID:mdclarke,项目名称:mne-python,代码行数:101,代码来源:test_ica.py
示例3: test_ica_core
def test_ica_core():
"""Test ICA on raw and epochs"""
raw = Raw(raw_fname).crop(1.5, stop, False)
raw.load_data()
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
# XXX. The None cases helped revealing bugs but are time consuming.
test_cov = read_cov(test_cov_name)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
noise_cov = [None, test_cov]
# removed None cases to speed up...
n_components = [2, 1.0] # for future dbg add cases
max_pca_components = [3]
picks_ = [picks]
methods = ['fastica']
iter_ica_params = product(noise_cov, n_components, max_pca_components,
picks_, methods)
# # test init catchers
assert_raises(ValueError, ICA, n_components=3, max_pca_components=2)
assert_raises(ValueError, ICA, n_components=2.3, max_pca_components=2)
# test essential core functionality
for n_cov, n_comp, max_n, pcks, method in iter_ica_params:
# Test ICA raw
ica = ICA(noise_cov=n_cov, n_components=n_comp,
max_pca_components=max_n, n_pca_components=max_n,
random_state=0, method=method, max_iter=1)
assert_raises(ValueError, ica.__contains__, 'mag')
print(ica) # to test repr
# test fit checker
assert_raises(RuntimeError, ica.get_sources, raw)
assert_raises(RuntimeError, ica.get_sources, epochs)
# test decomposition
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=pcks, start=start, stop=stop)
repr(ica) # to test repr
assert_true('mag' in ica) # should now work without error
# test re-fit
unmixing1 = ica.unmixing_matrix_
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=pcks, start=start, stop=stop)
assert_array_almost_equal(unmixing1, ica.unmixing_matrix_)
sources = ica.get_sources(raw)[:, :][0]
assert_true(sources.shape[0] == ica.n_components_)
# test preload filter
raw3 = raw.copy()
raw3.preload = False
assert_raises(ValueError, ica.apply, raw3,
include=[1, 2])
#######################################################################
# test epochs decomposition
ica = ICA(noise_cov=n_cov, n_components=n_comp,
max_pca_components=max_n, n_pca_components=max_n,
random_state=0)
with warnings.catch_warnings(record=True):
ica.fit(epochs, picks=picks)
data = epochs.get_data()[:, 0, :]
n_samples = np.prod(data.shape)
assert_equal(ica.n_samples_, n_samples)
print(ica) # to test repr
sources = ica.get_sources(epochs).get_data()
assert_true(sources.shape[1] == ica.n_components_)
assert_raises(ValueError, ica.score_sources, epochs,
target=np.arange(1))
# test preload filter
epochs3 = epochs.copy()
epochs3.preload = False
assert_raises(ValueError, ica.apply, epochs3,
include=[1, 2])
# test for bug with whitener updating
_pre_whitener = ica._pre_whitener.copy()
epochs._data[:, 0, 10:15] *= 1e12
ica.apply(epochs, copy=True)
assert_array_equal(_pre_whitener, ica._pre_whitener)
# test expl. var threshold leading to empty sel
ica.n_components = 0.1
assert_raises(RuntimeError, ica.fit, epochs)
offender = 1, 2, 3,
assert_raises(ValueError, ica.get_sources, offender)
assert_raises(ValueError, ica.fit, offender)
assert_raises(ValueError, ica.apply, offender)
开发者ID:mdclarke,项目名称:mne-python,代码行数:99,代码来源:test_ica.py
示例4: test_ica_additional
def test_ica_additional():
"""Test additional ICA functionality
"""
stop2 = 500
raw = io.Raw(raw_fname, preload=True).crop(0, stop, False).crop(1.5)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
test_cov = read_cov(test_cov_name)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
# for testing eog functionality
picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=True, exclude='bads')
epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
baseline=(None, 0), preload=True)
test_cov2 = deepcopy(test_cov)
ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
n_pca_components=4)
assert_true(ica.info is None)
ica.decompose_raw(raw, picks[:5])
assert_true(isinstance(ica.info, Info))
assert_true(ica.n_components_ < 5)
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
assert_raises(RuntimeError, ica.save, '')
ica.decompose_raw(raw, picks=None, start=start, stop=stop2)
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
ica.save(ica_badname)
read_ica(ica_badname)
assert_true(len(w) == 2)
# test decim
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
raw_ = raw.copy()
for _ in range(3):
raw_.append(raw_)
n_samples = raw_._data.shape[1]
ica.decompose_raw(raw, picks=None, decim=3)
assert_true(raw_._data.shape[1], n_samples)
# test expl var
ica = ICA(n_components=1.0, max_pca_components=4,
n_pca_components=4)
ica.decompose_raw(raw, picks=None, decim=3)
assert_true(ica.n_components_ == 4)
# epochs extraction from raw fit
assert_raises(RuntimeError, ica.get_sources_epochs, epochs)
# test reading and writing
test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
for cov in (None, test_cov):
ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
n_pca_components=4)
with warnings.catch_warnings(record=True): # ICA does not converge
ica.decompose_raw(raw, picks=picks, start=start, stop=stop2)
sources = ica.get_sources_epochs(epochs)
assert_true(ica.mixing_matrix_.shape == (2, 2))
assert_true(ica.unmixing_matrix_.shape == (2, 2))
assert_true(ica.pca_components_.shape == (4, len(picks)))
assert_true(sources.shape[1] == ica.n_components_)
for exclude in [[], [0]]:
ica.exclude = [0]
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.exclude == ica_read.exclude)
# test pick merge -- add components
ica.pick_sources_raw(raw, exclude=[1])
assert_true(ica.exclude == [0, 1])
# -- only as arg
ica.exclude = []
ica.pick_sources_raw(raw, exclude=[0, 1])
assert_true(ica.exclude == [0, 1])
# -- remove duplicates
ica.exclude += [1]
ica.pick_sources_raw(raw, exclude=[0, 1])
assert_true(ica.exclude == [0, 1])
# test basic include
ica.exclude = []
ica.pick_sources_raw(raw, include=[1])
ica_raw = ica.sources_as_raw(raw)
assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in
ica_raw.info['bads']])
# test filtering
d1 = ica_raw._data[0].copy()
with warnings.catch_warnings(record=True): # dB warning
ica_raw.filter(4, 20)
#.........这里部分代码省略.........
开发者ID:eh123,项目名称:mne-python,代码行数:101,代码来源:test_ica.py
示例5: test_ica_core
def test_ica_core():
"""Test ICA on raw and epochs
"""
raw = io.Raw(raw_fname, preload=True).crop(0, stop, False).crop(1.5)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
# XXX. The None cases helped revealing bugs but are time consuming.
test_cov = read_cov(test_cov_name)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
noise_cov = [None, test_cov]
# removed None cases to speed up...
n_components = [2, 1.0] # for future dbg add cases
max_pca_components = [3]
picks_ = [picks]
iter_ica_params = product(noise_cov, n_components, max_pca_components,
picks_)
# # test init catchers
assert_raises(ValueError, ICA, n_components=3, max_pca_components=2)
assert_raises(ValueError, ICA, n_components=2.3, max_pca_components=2)
# test essential core functionality
for n_cov, n_comp, max_n, pcks in iter_ica_params:
# Test ICA raw
ica = ICA(noise_cov=n_cov, n_components=n_comp,
max_pca_components=max_n, n_pca_components=max_n,
random_state=0)
print(ica) # to test repr
# test fit checker
assert_raises(RuntimeError, ica.get_sources_raw, raw)
assert_raises(RuntimeError, ica.get_sources_epochs, epochs)
# test decomposition
ica.decompose_raw(raw, picks=pcks, start=start, stop=stop)
print(ica) # to test repr
# test re-init exception
assert_raises(RuntimeError, ica.decompose_raw, raw, picks=picks)
sources = ica.get_sources_raw(raw)
assert_true(sources.shape[0] == ica.n_components_)
# test preload filter
raw3 = raw.copy()
raw3._preloaded = False
assert_raises(ValueError, ica.pick_sources_raw, raw3,
include=[1, 2])
#######################################################################
# test epochs decomposition
# test re-init exception
assert_raises(RuntimeError, ica.decompose_epochs, epochs, picks=picks)
ica = ICA(noise_cov=n_cov, n_components=n_comp,
max_pca_components=max_n, n_pca_components=max_n,
random_state=0)
ica.decompose_epochs(epochs, picks=picks)
data = epochs.get_data()[:, 0, :]
n_samples = np.prod(data.shape)
assert_equal(ica.n_samples_, n_samples)
print(ica) # to test repr
# test pick block after epochs fit
assert_raises(ValueError, ica.pick_sources_raw, raw)
sources = ica.get_sources_epochs(epochs)
assert_true(sources.shape[1] == ica.n_components_)
assert_raises(ValueError, ica.find_sources_epochs, epochs,
target=np.arange(1))
# test preload filter
epochs3 = epochs.copy()
epochs3.preload = False
assert_raises(ValueError, ica.pick_sources_epochs, epochs3,
include=[1, 2])
开发者ID:eh123,项目名称:mne-python,代码行数:81,代码来源:test_ica.py
示例6: test_ica_additional
def test_ica_additional(method):
"""Test additional ICA functionality."""
_skip_check_picard(method)
tempdir = _TempDir()
stop2 = 500
raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
raw.del_proj() # avoid warnings
raw.set_annotations(Annotations([0.5], [0.5], ['BAD']))
# XXX This breaks the tests :(
# raw.info['bads'] = [raw.ch_names[1]]
test_cov = read_cov(test_cov_name)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')[1::2]
epochs = Epochs(raw, events, None, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True, proj=False)
epochs.decimate(3, verbose='error')
assert len(epochs) == 4
# test if n_components=None works
ica = ICA(n_components=None, max_pca_components=None,
n_pca_components=None, random_state=0, method=method, max_iter=1)
with pytest.warns(UserWarning, match='did not converge'):
ica.fit(epochs)
# for testing eog functionality
picks2 = np.concatenate([picks, pick_types(raw.info, False, eog=True)])
epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
baseline=(None, 0), preload=True)
del picks2
test_cov2 = test_cov.copy()
ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
n_pca_components=4, method=method)
assert (ica.info is None)
with pytest.warns(RuntimeWarning, match='normalize_proj'):
ica.fit(raw, picks[:5])
assert (isinstance(ica.info, Info))
assert (ica.n_components_ < 5)
ica = ICA(n_components=3, max_pca_components=4, method=method,
n_pca_components=4, random_state=0)
pytest.raises(RuntimeError, ica.save, '')
ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2)
# check passing a ch_name to find_bads_ecg
with pytest.warns(RuntimeWarning, match='longer'):
_, scores_1 = ica.find_bads_ecg(raw)
_, scores_2 = ica.find_bads_ecg(raw, raw.ch_names[1])
assert scores_1[0] != scores_2[0]
# test corrmap
ica2 = ica.copy()
ica3 = ica.copy()
corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
ch_type="mag")
corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False)
assert (ica.labels_["blinks"] == ica2.labels_["blinks"])
assert (0 in ica.labels_["blinks"])
# test retrieval of component maps as arrays
components = ica.get_components()
template = components[:, 0]
EvokedArray(components, ica.info, tmin=0.).plot_topomap([0], time_unit='s')
corrmap([ica, ica3], template, threshold='auto', label='blinks', plot=True,
ch_type="mag")
assert (ica2.labels_["blinks"] == ica3.labels_["blinks"])
plt.close('all')
ica_different_channels = ICA(n_components=2, random_state=0).fit(
raw, picks=[2, 3, 4, 5])
pytest.raises(ValueError, corrmap, [ica_different_channels, ica], (0, 0))
# test warnings on bad filenames
ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
with pytest.warns(RuntimeWarning, match='-ica.fif'):
ica.save(ica_badname)
with pytest.warns(RuntimeWarning, match='-ica.fif'):
read_ica(ica_badname)
# test decim
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4, method=method, max_iter=1)
raw_ = raw.copy()
for _ in range(3):
raw_.append(raw_)
n_samples = raw_._data.shape[1]
with pytest.warns(UserWarning, match='did not converge'):
ica.fit(raw, picks=picks[:5], decim=3)
assert raw_._data.shape[1] == n_samples
# test expl var
ica = ICA(n_components=1.0, max_pca_components=4,
n_pca_components=4, method=method, max_iter=1)
with pytest.warns(UserWarning, match='did not converge'):
ica.fit(raw, picks=None, decim=3)
assert (ica.n_components_ == 4)
ica_var = _ica_explained_variance(ica, raw, normalize=True)
#.........这里部分代码省略.........
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:101,代码来源:test_ica.py
示例7: test_ica_core
def test_ica_core(method):
"""Test ICA on raw and epochs."""
_skip_check_picard(method)
raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
# XXX. The None cases helped revealing bugs but are time consuming.
test_cov = read_cov(test_cov_name)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
noise_cov = [None, test_cov]
# removed None cases to speed up...
n_components = [2, 1.0] # for future dbg add cases
max_pca_components = [3]
picks_ = [picks]
methods = [method]
iter_ica_params = product(noise_cov, n_components, max_pca_components,
picks_, methods)
# # test init catchers
pytest.raises(ValueError, ICA, n_components=3, max_pca_components=2)
pytest.raises(ValueError, ICA, n_components=2.3, max_pca_components=2)
# test essential core functionality
for n_cov, n_comp, max_n, pcks, method in iter_ica_params:
# Test ICA raw
ica = ICA(noise_cov=n_cov, n_components=n_comp,
max_pca_components=max_n, n_pca_components=max_n,
random_state=0, method=method, max_iter=1)
pytest.raises(ValueError, ica.__contains__, 'mag')
print(ica) # to test repr
# test fit checker
pytest.raises(RuntimeError, ica.get_sources, raw)
pytest.raises(RuntimeError, ica.get_sources, epochs)
# test decomposition
with pytest.warns(UserWarning, match='did not converge'):
ica.fit(raw, picks=pcks, start=start, stop=stop)
repr(ica) # to test repr
assert ('mag' in ica) # should now work without error
# test re-fit
unmixing1 = ica.unmixing_matrix_
with pytest.warns(UserWarning, match='did not converge'):
ica.fit(raw, picks=pcks, start=start, stop=stop)
assert_array_almost_equal(unmixing1, ica.unmixing_matrix_)
raw_sources = ica.get_sources(raw)
# test for #3804
assert_equal(raw_sources._filenames, [None])
print(raw_sources)
# test for gh-6271 (scaling of ICA traces)
fig = raw_sources.plot()
assert len(fig.axes[0].lines) in (4, 5)
for line in fig.axes[0].lines[1:-1]: # first and last are markers
y = line.get_ydata()
assert np.ptp(y) < 10
plt.close('all')
sources = raw_sources[:, :][0]
assert (sources.shape[0] == ica.n_components_)
# test preload filter
raw3 = raw.copy()
raw3.preload = False
pytest.raises(RuntimeError, ica.apply, raw3,
include=[1, 2])
#######################################################################
# test epochs decomposition
ica = ICA(noise_cov=n_cov, n_components=n_comp,
max_pca_components=max_n, n_pca_components=max_n,
random_state=0, method=method)
with pytest.warns(None): # sometimes warns
ica.fit(epochs, picks=picks)
data = epochs.get_data()[:, 0, :]
n_samples = np.prod(data.shape)
assert_equal(ica.n_samples_, n_samples)
print(ica) # to test repr
sources = ica.get_sources(epochs).get_data()
assert (sources.shape[1] == ica.n_components_)
pytest.raises(ValueError, ica.score_sources, epochs,
target=np.arange(1))
# test preload filter
epochs3 = epochs.copy()
epochs3.preload = False
pytest.raises(RuntimeError, ica.apply, epochs3,
include=[1, 2])
# test for bug with whitener updating
_pre_whitener = ica.pre_whitener_.copy()
epochs._data[:, 0, 10:15] *= 1e12
#.........这里部分代码省略.........
开发者ID:adykstra,项目名称:mne-python,代码行数:101,代码来源:test_ica.py
示例8: read_events
start, stop = 0, 8 # if stop is too small pca may fail in some cases, but
# we're okay on this file
raw = fiff.Raw(raw_fname, preload=True).crop(0, stop, False)
events = read_events(event_name)
picks = fiff.pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False,
exclude='bads')
# for testing eog functionality
picks2 = fiff.pick_types(raw.info, meg=True, stim=False, ecg=False, eog=True,
exclude='bads')
reject = dict(grad=1000e-12, mag=4e-12, eeg=80e-6, eog=150e-6)
flat = dict(grad=1e-15, mag=1e-15)
test_cov = cov.read_cov(test_cov_name)
epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
baseline=(None, 0), preload=True)
@requires_sklearn
def test_ica_core():
"""Test ICA on raw and epochs
"""
# setup parameter
# XXX. The None cases helped revealing bugs but are time consuming.
noise_cov = [None, test_cov]
# removed None cases to speed up...
开发者ID:mshamalainen,项目名称:mne-python,代码行数:31,代码来源:test_ica.py
注:本文中的mne.cov.read_cov函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论