• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pylab.xlabel函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中matplotlib.pylab.xlabel函数的典型用法代码示例。如果您正苦于以下问题:Python xlabel函数的具体用法?Python xlabel怎么用?Python xlabel使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了xlabel函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: check_models

    def check_models(self):
        plt.figure('Bandgap narrowing')
        Na = np.logspace(12, 20)
        Nd = 0.
        dn = 1e14
        temp = 300.

        for author in self.available_models():
            BGN = self.update(Na=Na, Nd=Nd, nxc=dn,
                              author=author,
                              temp=temp)

            if not np.all(BGN == 0):
                plt.plot(Na, BGN, label=author)

        test_file = os.path.join(
            os.path.dirname(os.path.realpath(__file__)),
            'Si', 'check data', 'Bgn.csv')

        data = np.genfromtxt(test_file, delimiter=',', names=True)

        for name in data.dtype.names[1:]:
            plt.plot(
                data['N'], data[name], 'r--',
                label='PV-lighthouse\'s: ' + name)

        plt.semilogx()
        plt.xlabel('Doping (cm$^{-3}$)')
        plt.ylabel('Bandgap narrowing (K)')

        plt.legend(loc=0)
开发者ID:MK8J,项目名称:QSSPL-analyser,代码行数:31,代码来源:bandgap_narrowing.py


示例2: make_corr1d_fig

def make_corr1d_fig(dosave=False):
    corr = make_corr_both_hemi()
    lw=2; fs=16
    pl.figure(1)#, figsize=(8, 7))
    pl.clf()
    pl.xlim(4,300)
    pl.ylim(-400,+500)    
    lambda_titles = [r'$20 < \lambda < 30$',
                     r'$30 < \lambda < 40$',
                     r'$\lambda > 40$']
    colors = ['blue','green','red']
    for i in range(3):
        corr1d, rcen = corr_1d_from_2d(corr[i])
        ipdb.set_trace()
        pl.semilogx(rcen, corr1d*rcen**2, lw=lw, color=colors[i])
        #pl.semilogx(rcen, corr1d*rcen**2, 'o', lw=lw, color=colors[i])
    pl.xlabel(r'$s (Mpc)$',fontsize=fs)
    pl.ylabel(r'$s^2 \xi_0(s)$', fontsize=fs)    
    pl.legend(lambda_titles, 'lower left', fontsize=fs+3)
    pl.plot([.1,10000],[0,0],'k--')
    s_bao = 149.28
    pl.plot([s_bao, s_bao],[-9e9,+9e9],'k--')
    pl.text(s_bao*1.03, 420, 'BAO scale')
    pl.text(s_bao*1.03, 370, '%0.1f Mpc'%s_bao)
    if dosave: pl.savefig('xi1d_3bin.pdf')
开发者ID:amanzotti,项目名称:vksz,代码行数:25,代码来源:vksz.py


示例3: plot_bernoulli_matrix

 def plot_bernoulli_matrix(self, show_npfs=False):
   """
   Plot the heatmap of the Bernoulli matrix 
   @self
   @show_npfs - Highlight NPFS detections [Boolean] 
   """
   matrix = self.Bernoulli_matrix
   if show_npfs == False:
     plot = plt.imshow(matrix)
     plot.set_cmap('hot')
     plt.colorbar()
     plt.xlabel("Bootstraps")
     plt.ylabel("Feature")
     plt.show()
   else:
     for i in self.selected_features:
       for k in range(len(matrix[i])):
         matrix[i,k] = .5
     plot = plt.imshow(matrix)
     plot.set_cmap('hot')
     plt.xlabel("Bootstraps")
     plt.ylabel("Feature")
     plt.colorbar()
     plt.show()
   return None
开发者ID:gditzler,项目名称:py-npfs,代码行数:25,代码来源:npfs.py


示例4: plot

    def plot(self, title=None, **kwargs):
        """Generates a pylab plot from the result set.

        ``matplotlib`` must be installed, and in an
        IPython Notebook, inlining must be on::

            %%matplotlib inline

        The first and last columns are taken as the X and Y
        values.  Any columns between are ignored.

        Parameters
        ----------
        title: Plot title, defaults to names of Y value columns

        Any additional keyword arguments will be passsed
        through to ``matplotlib.pylab.plot``.
        """
        import matplotlib.pylab as plt
        self.guess_plot_columns()
        self.x = self.x or range(len(self.ys[0]))
        coords = reduce(operator.add, [(self.x, y) for y in self.ys])
        plot = plt.plot(*coords, **kwargs)
        if hasattr(self.x, 'name'):
            plt.xlabel(self.x.name)
        ylabel = ", ".join(y.name for y in self.ys)
        plt.title(title or ylabel)
        plt.ylabel(ylabel)
        return plot
开发者ID:RedBrainLabs,项目名称:ipython-sql,代码行数:29,代码来源:run.py


示例5: study_redmapper_2d

def study_redmapper_2d():
    # I just want to know the typical angular separation for RM clusters.
    # I'm going to do this in a lazy way.
    hemi = 'north'
    rm = load_redmapper(hemi=hemi)
    ra = rm['ra']
    dec = rm['dec']
    ncl = len(ra)
    dist = np.zeros((ncl, ncl))
    for i in range(ncl):
        this_ra = ra[i]
        this_dec = dec[i]
        dra = this_ra-ra
        ddec = this_dec-dec
        dxdec = dra*np.cos(this_dec*np.pi/180.)
        dd = np.sqrt(dxdec**2. + ddec**2.)
        dist[i,:] = dd
        dist[i,i] = 99999999.
    d_near_arcmin = dist.min(0)*60.
    pl.clf(); pl.hist(d_near_arcmin, bins=100)
    pl.title('Distance to Nearest Neighbor for RM clusters')
    pl.xlabel('Distance (arcmin)')
    pl.ylabel('N')
    fwhm_planck_217 = 5.5 # arcmin
    sigma = fwhm_planck_217/2.355
    frac_2sigma = 1.*len(np.where(d_near_arcmin>2.*sigma)[0])/len(d_near_arcmin)
    frac_3sigma = 1.*len(np.where(d_near_arcmin>3.*sigma)[0])/len(d_near_arcmin)
    print '%0.3f percent of RM clusters are separated by 2-sigma_planck_beam'%(100.*frac_2sigma)
    print '%0.3f percent of RM clusters are separated by 3-sigma_planck_beam'%(100.*frac_3sigma)    
    ipdb.set_trace()
开发者ID:amanzotti,项目名称:vksz,代码行数:30,代码来源:vksz.py


示例6: plot_confusion_matrix

def plot_confusion_matrix(cm, title='', cmap=plt.cm.Blues):
    #print cm
    #display vehicle, idle, walking accuracy respectively
    #display overall accuracy
    print type(cm)
   # plt.figure(index
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    #plt.figure("")
    plt.title("Confusion Matrix")
    plt.colorbar()
    tick_marks = [0,1,2]
    target_name = ["driving","idling","walking"]


    plt.xticks(tick_marks,target_name,rotation=45)

    plt.yticks(tick_marks,target_name,rotation=45)
    print len(cm[0])

    for i in range(0,3):
        for j in range(0,3):
         plt.text(i,j,str(cm[i,j]))
    plt.tight_layout()
    plt.ylabel("Actual Value")
    plt.xlabel("Predicted Outcome")
开发者ID:sb1989,项目名称:fyp,代码行数:25,代码来源:KNNClassifierAccuracy.py


示例7: test_simple_gen

 def test_simple_gen(self):
     self_con = .8
     other_con = 0.05
     g = self.gen.gen_stoch_blockmodel(min_degree=1, blocks=5, self_con=self_con, other_con=other_con,
                                       powerlaw_exp=2.1, degree_seq='powerlaw', num_nodes=1000, num_links=3000)
     deg_hist = vertex_hist(g, 'total')
     res = fit_powerlaw.Fit(g.degree_property_map('total').a, discrete=True)
     print 'powerlaw alpha:', res.power_law.alpha
     print 'powerlaw xmin:', res.power_law.xmin
     if len(deg_hist[0]) != len(deg_hist[1]):
         deg_hist[1] = deg_hist[1][:len(deg_hist[0])]
     print 'plot degree dist'
     plt.plot(deg_hist[1], deg_hist[0])
     plt.xscale('log')
     plt.xlabel('degree')
     plt.ylabel('#nodes')
     plt.yscale('log')
     plt.savefig('deg_dist_test.png')
     plt.close('all')
     print 'plot graph'
     pos = sfdp_layout(g, groups=g.vp['com'], mu=3)
     graph_draw(g, pos=pos, output='graph.png', output_size=(800, 800),
                vertex_size=prop_to_size(g.degree_property_map('total'), mi=2, ma=30), vertex_color=[0., 0., 0., 1.],
                vertex_fill_color=g.vp['com'],
                bg_color=[1., 1., 1., 1.])
     plt.close('all')
     print 'init:', self_con / (self_con + other_con), other_con / (self_con + other_con)
     print 'real:', gt_tools.get_graph_com_connectivity(g, 'com')
开发者ID:floriangeigl,项目名称:tools,代码行数:28,代码来源:gt_tools_tests.py


示例8: handle

    def handle(self, *args, **options):
        try:
            from matplotlib import pylab as pl
            import numpy as np
        except ImportError:
            raise Exception('Be sure to install requirements_scipy.txt before running this.')

        all_names_and_counts = RawCommitteeTransactions.objects.all().values('attest_by_name').annotate(total=Count('attest_by_name')).order_by('-total')
        all_names_and_counts_as_tuple_and_sorted = sorted([(row['attest_by_name'], row['total']) for row in all_names_and_counts], key=lambda row: row[1])
        print "top ten attestors:  (name, number of transactions they attest for)"
        for row in all_names_and_counts_as_tuple_and_sorted[-10:]:
            print row

        n_bins = 100
        filename = 'attestor_participation_distribution.png'

        x_max = all_names_and_counts_as_tuple_and_sorted[-31][1]  # eliminate top outliers from hist
        x_min = all_names_and_counts_as_tuple_and_sorted[0][1]

        counts = [row['total'] for row in all_names_and_counts]
        pl.figure(1, figsize=(18, 6))
        pl.hist(counts, bins=np.arange(x_min, x_max, (float(x_max)-x_min)/100) )
        pl.title('Histogram of Attestor Participation in RawCommitteeTransactions')
        pl.xlabel('Number of transactions a person attested for')
        pl.ylabel('Number of people')
        pl.savefig(filename)
开发者ID:avaleske,项目名称:hackor,代码行数:26,代码来源:graph_dist_of_attestor_contribution_in_CommTrans.py


示例9: fdr

def fdr(p_values=None, verbose=0):
    """Returns the FDR associated with each p value

    Parameters
    -----------
    p_values : ndarray of shape (n)
        The samples p-value

    Returns
    -------
    q : array of shape(n)
        The corresponding fdr values
    """
    p_values = check_p_values(p_values)
    n_samples = p_values.size
    order = p_values.argsort()
    sp_values = p_values[order]

    # compute q while in ascending order
    q = np.minimum(1, n_samples * sp_values / np.arange(1, n_samples + 1))
    for i in range(n_samples - 1, 0, - 1):
        q[i - 1] = min(q[i], q[i - 1])

    # reorder the results
    inverse_order = np.arange(n_samples)
    inverse_order[order] = np.arange(n_samples)
    q = q[inverse_order]

    if verbose:
        import matplotlib.pylab as mp
        mp.figure()
        mp.xlabel('Input p-value')
        mp.plot(p_values, q, '.')
        mp.ylabel('Associated fdr')
    return q
开发者ID:Naereen,项目名称:nipy,代码行数:35,代码来源:empirical_pvalue.py


示例10: flipPlot

def flipPlot(minExp, maxExp):
    """假定minEXPy和maxExp是正整数且minExp<maxExp
    绘制出2**minExp到2**maxExp次抛硬币的结果
    """
    ratios = []
    diffs = []
    aAxis = []
    for i in range(minExp, maxExp+1):
        aAxis.append(2**i)
    for numFlips in aAxis:
        numHeads = 0
        for n in range(numFlips):
            if random.random() < 0.5:
                numHeads += 1
        numTails = numFlips - numHeads
        ratios.append(numHeads/numFlips)
        diffs.append(abs(numHeads-numTails))
    plt.figure()
    ax1 = plt.subplot(121)
    plt.title("Difference Between Heads and Tails")
    plt.xlabel('Number of Flips')
    plt.ylabel('Abs(#Heads - #Tails)')
    ax1.semilogx(aAxis, diffs, 'bo')
    ax2 = plt.subplot(122)
    plt.title("Heads/Tails Ratios")
    plt.xlabel('Number of Flips')
    plt.ylabel("#Heads/#Tails")
    ax2.semilogx(aAxis, ratios, 'bo')
    plt.show()
开发者ID:xiaohu2015,项目名称:ProgrammingPython_notes,代码行数:29,代码来源:chapter12.py


示例11: plot_q

def plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):
    """
    Plot a radiallysymmetric Q model.

    plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0):

    r_min=minimum radius [km], r_max=maximum radius [km], dr=radius
    increment [km]

    Currently available models (model): cem, prem, ql6
    """
    import matplotlib.pylab as plt

    r = np.arange(r_min, r_max + dr, dr)
    q = np.zeros(len(r))

    for k in range(len(r)):

        if model == 'cem':
            q[k] = q_cem(r[k])
        elif model == 'ql6':
            q[k] = q_ql6(r[k])
        elif model == 'prem':
            q[k] = q_prem(r[k])

    plt.plot(r, q, 'k')
    plt.xlim((0.0, r_max))
    plt.xlabel('radius [km]')
    plt.ylabel('Q')
    plt.show()
开发者ID:krischer,项目名称:ses3d_ctrl,代码行数:30,代码来源:Q_models.py


示例12: plot_runtime_results

def plot_runtime_results(results):
    plt.rcParams["figure.figsize"] = 7,7
    plt.rcParams["font.size"] = 22
    matplotlib.rc("xtick", labelsize=24)
    matplotlib.rc("ytick", labelsize=24)

    params = {"text.fontsize" : 32,
              "font.size" : 32,
              "legend.fontsize" : 30,
              "axes.labelsize" : 32,
              "text.usetex" : False
              }
    plt.rcParams.update(params)
    
    #plt.semilogx(results[:,0], results[:,3], 'r-x', lw=3)
    #plt.semilogx(results[:,0], results[:,1], 'g-D', lw=3)
    #plt.semilogx(results[:,0], results[:,2], 'b-s', lw=3)

    plt.plot(results[:,0], results[:,3], 'r-x', lw=3, ms=10)
    plt.plot(results[:,0], results[:,1], 'g-D', lw=3, ms=10)
    plt.plot(results[:,0], results[:,2], 'b-s', lw=3, ms=10)

    plt.legend(["Chain", "Tree", "FFT Tree"], loc="upper left")
    plt.xticks([1e5, 2e5, 3e5])
    plt.yticks([0, 60, 120, 180])

    plt.xlabel("Problem Size")
    plt.ylabel("Runtime (sec)")
    return results
开发者ID:kswersky,项目名称:CaRBM,代码行数:29,代码来源:sum_cardinality.py


示例13: plotMassFunction

def plotMassFunction(im, pm, outbase, mmin=9, mmax=13, mstep=0.05):
    """
    Make a comparison plot between the input mass function and the 
    predicted projected correlation function
    """
    plt.clf()

    nmbins = ( mmax - mmin ) / mstep
    mbins = np.logspace( mmin, mmax, nmbins )
    mcen = ( mbins[:-1] + mbins[1:] ) /2
    
    plt.xscale( 'log', nonposx = 'clip' )
    plt.yscale( 'log', nonposy = 'clip' )
    
    ic, e, p = plt.hist( im, mbins, label='Original Halos', alpha=0.5, normed = True)
    pc, e, p = plt.hist( pm, mbins, label='Added Halos', alpha=0.5, normed = True)
    
    plt.legend()
    plt.xlabel( r'$M_{vir}$' )
    plt.ylabel( r'$\frac{dN}{dM}$' )
    #plt.tight_layout()
    plt.savefig( outbase+'_mfcn.png' )
    
    mdtype = np.dtype( [ ('mcen', float), ('imcounts', float), ('pmcounts', float) ] )
    mf = np.ndarray( len(mcen), dtype = mdtype )
    mf[ 'mcen' ] = mcen
    mf[ 'imcounts' ] = ic
    mf[ 'pmcounts' ] = pc

    fitsio.write( outbase+'_mfcn.fit', mf )
开发者ID:j-dr,项目名称:ADDHALOS,代码行数:30,代码来源:validation.py


示例14: plotFeaturePDF

def plotFeaturePDF(ift, pft, outbase, fmin=0.0, fmax=1.0, fstep=0.01):
    """
    Plot a comparison between the input feature distribution and the 
    feature distribution of the predicted halos
    """
    plt.clf()
    nfbins = ( fmax - fmin ) / fstep
    fbins = np.logspace( fmin, fmax, nfbins )
    fcen = ( fbins[:-1] + fbins[1:] ) / 2

    plt.xscale( 'log', nonposx='clip' )
    plt.yscale( 'log', nonposy='clip' )
    
    ic, e, p = plt.hist( ift, fbins, label='Original Halos', alpha=0.5, normed=True )
    pc, e, p = plt.hist( pft, fbins, label='Added Halos', alpha=0.5, normed=True )

    plt.legend()
    plt.xlabel( r'$\delta$' )
    plt.savefig( outbase+'_fpdf.png' )

    fdtype = np.dtype( [ ('fcen', float), ('ifcounts', float), ('pfcounts', float) ] )
    fd = np.ndarray( len(fcen), dtype = fdtype )
    fd[ 'mcen' ] = fcen
    fd[ 'imcounts' ] = ic
    fd[ 'pmcounts' ] = pc

    fitsio.write( outbase+'_fpdf.fit', fd )
开发者ID:j-dr,项目名称:ADDHALOS,代码行数:27,代码来源:validation.py


示例15: cdf

def cdf(x,colsym="",lab="",lw=4):
    """ plot the cumulative density function

    Parameters
    ----------

    x : np.array()
    colsym : string
    lab : string
    lw : int
        linewidth

    Examples
    --------

    >>> import numpy as np

    """
    rcParams['legend.fontsize']=20
    rcParams['font.size']=20

    x  = np.sort(x)
    n  = len(x)
    x2 = np.repeat(x, 2)
    y2 = np.hstack([0.0, repeat(np.arange(1,n) / float(n), 2), 1.0])
    plt.plot(x2,y2,colsym,label=lab,linewidth=lw)
    plt.grid('on')
    plt.legend(loc=2)
    plt.xlabel('Ranging Error[m]')
    plt.ylabel('Cumulative Probability')
开发者ID:HSID,项目名称:pylayers,代码行数:30,代码来源:loss.py


示例16: set_axis_0

def set_axis_0():
    pylab.xlabel('time (days)')
    pylab.gcf().subplots_adjust(top=1.0-0.13, bottom=0.2, right=1-0.02,
                                left=0.2)
    a = list(pylab.axis())
    na = [a[0], a[1], 0, a[3]*1.05]
    pylab.axis(na)
开发者ID:AndreaCensi,项目名称:busymail,代码行数:7,代码来源:plot.py


示例17: __call__

   def __call__(self, **params):

       p = ParamOverrides(self, params)
       fig = plt.figure(figsize=(5, 5))

       # This one-liner works in Octave, but in matplotlib it
       # results in lines that are all connected across rows and columns,
       # so here we plot each line separately:
       #   plt.plot(x,y,"k-",transpose(x),transpose(y),"k-")
       # Here, the "k-" means plot in black using solid lines;
       # see matplotlib for more info.
       isint = plt.isinteractive() # Temporarily make non-interactive for
       # plotting
       plt.ioff()
       for r, c in zip(p.y[::p.skip], p.x[::p.skip]):
           plt.plot(c, r, "k-")
       for r, c in zip(np.transpose(p.y)[::p.skip],np.transpose(p.x)[::p.skip]):
           plt.plot(c, r, "k-")

       # Force last line avoid leaving cells open
       if p.skip != 1:
           plt.plot(p.x[-1], p.y[-1], "k-")
           plt.plot(np.transpose(p.x)[-1], np.transpose(p.y)[-1], "k-")

       plt.xlabel('x')
       plt.ylabel('y')
       # Currently sets the input range arbitrarily; should presumably figure out
       # what the actual possible range is for this simulation (which would presumably
       # be the maximum size of any GeneratorSheet?).
       plt.axis(p.axis)

       if isint: plt.ion()
       self._generate_figure(p)
       return fig
开发者ID:sarahcattan,项目名称:topographica,代码行数:34,代码来源:pylabplot.py


示例18: plot_corner_posteriors

    def plot_corner_posteriors(self, savefile=None, labels=["T1", "R1", "Av", "T2", "R2"]):
        '''
        Plots the corner plot of the MCMC results.
        '''
        ndim = len(self.sampler.flatchain[0,:])
        chain = self.sampler
        samples = chain.flatchain
        
        samples = samples[:,0:ndim]  
        plt.figure(figsize=(8,8))
        fig = corner.corner(samples, labels=labels[0:ndim])
        plt.title("MJD: %.2f"%self.mjd)
        name = self._get_save_path(savefile, "mcmc_posteriors")
        plt.savefig(name)
        plt.close("all")
        

        plt.figure(figsize=(8,ndim*3))
        for n in range(ndim):
            plt.subplot(ndim,1,n+1)
            chain = self.sampler.chain[:,:,n]
            nwalk, nit = chain.shape
            
            for i in np.arange(nwalk):
                plt.plot(chain[i], lw=0.1)
                plt.ylabel(labels[n])
                plt.xlabel("Iteration")
        name_walkers = self._get_save_path(savefile, "mcmc_walkers")
        plt.tight_layout()
        plt.savefig(name_walkers)
        plt.close("all")  
开发者ID:nblago,项目名称:utils,代码行数:31,代码来源:BBFit.py


示例19: plot_values

 def plot_values(self, TITLE, SAVE):
     plot(self.list_of_densities, self.list_of_pressures)
     title(TITLE)
     xlabel("Densities")
     ylabel("Pressure")
     savefig(SAVE)
     show()
开发者ID:Schoyen,项目名称:molecular-dynamics-fys3150,代码行数:7,代码来源:PlotPressureNumber.py


示例20: plot_cell

	def plot_cell(self,cell_number=0,label='insert_label'):

		current_cell = self.cell_list[cell_number]
		temp = current_cell.temp
		cd_signal = current_cell.cd_signal
		cd_calc = current_cell.cd_calc()
		
		ax = pylab.gca()

		pylab.plot(temp,cd_signal,'o',color='black')
                pylab.plot(temp,cd_calc,color='black')
		pylab.xlabel(r'Temperature ($^{\circ}$C)')
		pylab.ylabel('mdeg')
		pylab.ylim([-25,-4])
		dH = numpy.round(current_cell.dH, decimals=1)
		Tm = numpy.round(current_cell.Tm-273.15, decimals=1)
		nf = current_cell.nf
		nu = current_cell.nu
		textstr_dH = '${\Delta}H_{m}$ = %.1f kcal/mol' %dH
		textstr_Tm ='$T_{m}$ = %.1f $^{\circ}$C' %Tm
		textstr_nf ='$N_{folded}$ = %d' %nf
		textstr_nu ='$N_{unfolded}$ = %d'%nu
		ax.text(8,-6,textstr_dH, fontsize=16,ha='left',va='top')
		ax.text(8,-7.5,textstr_Tm, fontsize=16,ha='left',va='top')
		ax.text(8,-9,textstr_nf, fontsize=16,ha='left',va='top')
		ax.text(8,-10.5,textstr_nu, fontsize=16,ha='left',va='top')
		pylab.title(label)		
		pylab.show()

		return
开发者ID:dalekreitler,项目名称:cd_modeller,代码行数:30,代码来源:cd_modeller.py



注:本文中的matplotlib.pylab.xlabel函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pylab.xlim函数代码示例发布时间:2022-05-27
下一篇:
Python pylab.unravel_index函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap