本文整理汇总了Python中matplotlib.pylab.unravel_index函数的典型用法代码示例。如果您正苦于以下问题:Python unravel_index函数的具体用法?Python unravel_index怎么用?Python unravel_index使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了unravel_index函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: ICDPLA
def ICDPLA(alignment_matrix, path_trace_matrix, superior, inferior, row_offset, transposed=False):
# stopping condition -> if max value is 0, there are no more alignments..or the matrix is empty, so just return nothing
if len(alignment_matrix) == 0 or (np.max(alignment_matrix) == 0):
return 0, []
# find max in Smith-Waterman matrix
max_index = pl.unravel_index(alignment_matrix.argmax(), alignment_matrix.shape)
# calculate distance over alignment path
local_distance = 0.0
# the start index will be where the alignment begins (necessary to remove submatrix)
start_x = row_offset
start_y = 0
# these indices trace path backwards
x_index = max_index[0]+row_offset
y_index = max_index[1]
while (x_index != -1 and x_index >= row_offset):
start_x = x_index
start_y = y_index
local_distance += (np.linalg.norm(superior[x_index][:]-inferior[y_index][:])) / (4*np.sqrt(2))
if transposed:
[y_index, x_index] = path_trace_matrix[x_index][y_index]
else:
[x_index, y_index] = path_trace_matrix[x_index][y_index]
# remove appropriate rows from sequence1 and split into two matrices to be involved in the same process
alignment_top_submatrix = alignment_matrix[:(start_x-row_offset),:]
alignment_bottom_submatrix = alignment_matrix[max_index[0]+1:, :]
[distance_top, alignments_top] = ICDPLA(alignment_top_submatrix, path_trace_matrix, superior, inferior, row_offset, transposed)
[distance_bottom, alignments_bottom] = ICDPLA(alignment_bottom_submatrix, path_trace_matrix, superior, inferior, row_offset+max_index[0], transposed)
total_distance = distance_top+distance_bottom+local_distance
alignments = [[[start_x, start_y], [max_index[0]+row_offset, max_index[1]]]]
alignments.extend(alignments_top)
alignments.extend(alignments_bottom)
return total_distance, alignments
开发者ID:aronglennon,项目名称:automatic_programming_sound_synthesis,代码行数:32,代码来源:similarity_calc.py
示例2: contour
def contour(self,tmin,tmax,t0min=-1,t0max=-1,steps=100.,amax=3000.,showopt=True,statusreport=False):
if t0min<0:
t0min=tmin
if t0max<0:
t0max=tmax
nbar=self.nbar
sideband=self.sideband
delta = self.delta
nu = self.nu
omega = self.omega
Z=list(np.zeros((steps,steps)))
z=list(np.zeros(steps))
xdelta = (tmax-tmin)/steps
ydelta = (t0max-t0min)/steps
x = np.arange(tmin, tmax, xdelta)
y = np.arange(t0min, t0max, ydelta)
X, Y = np.meshgrid(x, y)
dyn=Sideband(nbar=nbar,sideband=sideband,delta = delta,nu = nu,omega = omega,amax=amax)
print 'generating list for analytical contour plot'
half=False
index=0
for i in y:
try:
Z[index]=dyn.localsignal(i,x+i)
z[index]=np.sum(Z[index])/steps
except IndexError:
print 'Warning: index ran out of range, removing last element'
t=list(X)
t.pop()
X=np.array(t)
t=list(Y)
t.pop()
Y=np.array(t)
if i>(t0max-t0min)/2.+t0min and not half:
print ' 50% done'
half=True
if statusreport:
print 'step '+str(index+1)+' of '+str(len(y))
index=index+1
print 'done'
fig2=pyplot.figure()
pyplot.title('Analytical local signal')
pyplot.xlabel('t+t0')
pyplot.ylabel('t0')
pyplot.contourf(X, Y, Z)
if showopt:
m=pylab.unravel_index(np.array(Z).argmax(), np.array(Z).shape)
pyplot.annotate('nbar = {:.2f}'.format(nbar)+'. Optimal t0 in plotted range is {:.6f}'.format(X[m])+'. Highest contrast is {:.2f}'.format(np.array(Z).max()),xy=(0.,-0.115), xycoords='axes fraction')
pyplot.axvline(x=X[m],ls=':',color='k')
pyplot.axhline(y=Y[m],ls=':',color='k')
fig3=pyplot.figure()
pyplot.title('Time-averaged local signal')
pyplot.xlabel('t0')
pyplot.plot(Y,z)
开发者ID:EQ4,项目名称:resonator,代码行数:55,代码来源:TheoryPrediction.py
示例3: __init__
def __init__(self, parent,ident):
self.parent = parent
dataset, directory, index = ident
dataX, dataY = self.getData(dataset, directory, index)
Xmax = dataX.max()
Xmin = dataX.min()
center = dataX[pylab.unravel_index(np.array(dataY).argmax(),np.array(dataY).shape)]
FWHM = (Xmax-Xmin)/6.0
height = dataY.max()
self.curveName = 'Lorentzian'
self.parameterNames = ['FWHM', 'Center','Height', 'Offset']
self.parameterValues = [FWHM,center,height,0.0]
self.parameterFit = [True,True,True,True]
开发者ID:AMOLabRAD,项目名称:New-Experiment,代码行数:13,代码来源:fitlorentzian.py
示例4: setPiTimeBoxes
def setPiTimeBoxes(self,which):
# UPDATE Pi-TIME SPIN BOXES
if self.curveName=='Rabi Flop':
dataX, dataY = self.fitRabiflop.getData(self.dataset, self.directory, self.index)
params = self.getParameter(which)
detailedX = np.linspace(dataX.min(),dataX.max(),1000)
dataY = self.fitRabiflop.fitFunc(detailedX, params)
m=pylab.unravel_index(np.array(dataY).argmax(), np.array(dataY).shape)
piTime=detailedX[m]
self.TwoPiTimeBox.setValue(2.0*piTime)
self.PiTimeBox.setValue(piTime)
self.PiOverTwoTimeBox.setValue(piTime/2.0)
if self.curveName in ['Cosine','Ramsey Fringes']:
f=self.parent.savedAnalysisParameters[self.dataset, self.directory, self.index, self.curveName][which]['Frequency']
self.TwoPiTimeBox.setValue(1.0/f*10**6)
self.PiTimeBox.setValue(0.5/f*10**6)
self.PiOverTwoTimeBox.setValue(0.25/f*10**6)
开发者ID:AMOLabRAD,项目名称:New-Experiment,代码行数:18,代码来源:analysiswindow.py
示例5: nb
flop_fit_y_axis = evo.state_evolution_fluc(flop_x_axis, nb(), f_Rabi(), delta(),delta_fluc())
#red_chi2 = chi_square(flop_y_axis[fitting_region], flop_fit_y_axis[fitting_region], flop_errors[fitting_region], True,len(fit_params))
figure = pyplot.figure()
i=0
for par in fit_params:
print 'P[{}] = {} +- {}'.format(i,par(),np.sqrt(cov[i][i]))
i+=1
enb = np.sqrt(cov[0][0])
ef_Rabi = np.sqrt(cov[1][1])
#pyplot.plot(flop_x_axis*10**6,flop_fit_y_axis,'r-')
m=pylab.unravel_index(np.array(flop_fit_y_axis).argmax(), np.array(flop_fit_y_axis).shape)
#print 'Flop maximum at {:.2f} us'.format(flop_x_axis[m]*10**6)+' -> Expected optimal t0 at {:.2f} us'.format(flop_x_axis[m]/2.0*10**6)
#print 'Actual t0 = {}'.format(t0)
#print '2pi time {}'.format(flop_x_axis[m]*f_Rabi()*2.0)
#pyplot.plot(flop_x_axis*10**6,flop_y_axis, 'ro')
#pyplot.plot(deph_x_axis*10**6,deph_y_axis, 'bs')
pyplot.xlabel(r'Subsequent evolution time $\frac{\Omega t}{2\pi}$',fontsize=size*22)
pyplot.ylim((0,ymax))
pyplot.ylabel('Local Hilbert-Schmidt Distance',fontsize=size*22)
#pyplot.legend()
subseq_evolution=np.where(flop_x_axis>=t0)
nicer_resolution = np.linspace(t0,flop_x_axis.max(),1000)
deph_fit_y_axis = evo.deph_evolution_fluc(nicer_resolution, t0,nb(),f_Rabi(),delta(),delta_fluc())
flop_fit_y_axis = evo.state_evolution_fluc(nicer_resolution, nb(), f_Rabi(), delta(),delta_fluc())
开发者ID:HaeffnerLab,项目名称:cct,代码行数:30,代码来源:3piover2.py
示例6: range
for fluctuations in fluclist:
nbarfitlist=[]
for nb in nbarlist:
nbar=Parameter(nb)
omega_R=Parameter(omega_center)
flops=[]
n1=int(n*100*fluctuations)
for i in range(n1):
print 'fluctuations = {:.2f}, nb = {:.2f}, i = {}'.format(fluctuations,nb,i)
x=random.uniform(-1,1)*fluctuations
sb=tp.Sideband(nb, sideband=sideband_order,omega=omega_center*(1.+x),nu=2.*np.pi*trap_frequency,amax=maxn)
sb.anaplot(0, xmax*10**-6*sb.p.omega/(2.*np.pi), 50, 0, dephasing=False, discord=False, lsig=False)
flops.append(sb.flop)
flops=np.sum(flops,axis=0)/np.float32(n1)
sb.x=2.*np.pi*sb.x/sb.p.omega
m=pylab.unravel_index(np.array(flops).argmax(), np.array(flops).shape)
fitting_region = np.where(sb.x <= 2.*sb.x[m])
p,success = fit(f, [nbar,omega_R], y = flops[fitting_region], x = sb.x[fitting_region])
nbarfitlist.append(nbar())
pyplot.plot(nbarlist,nbarfitlist,label = 'Fitted nbars with {:.1%} intensity fluctuations'.format(fluctuations))
pyplot.xlabel('True nbar')
pyplot.ylabel('Apparent (fitted) nbar on carrier')
pyplot.legend(loc=2)
pyplot.show()
开发者ID:EQ4,项目名称:resonator,代码行数:31,代码来源:IntensityFluctuationsFitNbars.py
示例7: f
def f(t):
evolution = flop.state_evolution_fluc(t,nbar(), f_Rabi(), delta(), delta_fluc())
return evolution
fit_params=[]
if info['fit_fRabi']: fit_params.append(f_Rabi)
if info['fit_nbar']: fit_params.append(nbar)
if info['fit_delta']: fit_params.append(delta)
if info['fit_delta_fluc']: fit_params.append(delta_fluc)
p,success = fit(f, fit_params, y = prob[fitting_region], x = times[fitting_region] - offset_time)
print 'fit for f_Rabi is ', f_Rabi()
print 'fit for nbar is', nbar()
if 'plot_initial_values' in info and info['plot_initial_values']:
evolution = flop.state_evolution_fluc( fit_times,fit_init_nbar, fit_init_fRabi,fit_init_delta,fit_init_delta_fluc )
else:
evolution = flop.state_evolution_fluc( fit_times, nbar(),f_Rabi(), delta(),delta_fluc())
pi_time_arg = pylab.unravel_index(np.array(evolution).argmax(),np.array(evolution).shape)
pi_time = fit_times[pi_time_arg]
print 'nbar = {}'.format(nbar())
print 'Rabi Pi Time is {} us'.format((pi_time)*10**6)
print 'Rabi Pi/2 Time is {} us'.format((pi_time)/2.0*10**6)
print 'Rabi Frequency is {} kHz'.format(f_Rabi()*10**-3)
print "The detuning is centered around {} kHz and spreads with a variance of {} kHz".format(delta()*10**-3,np.abs(delta_fluc())*10**-3)
plot_fit_label = 'fit with nb = {:.2f} and f_Rabi = {:.1f} kHz'.format(nbar(),10**-3 * f_Rabi())
plot_data_label = 'measured data, sideband = {}'.format(sideband_order)
elif info['plot_type']=='ramsey_fringe':
def ramsey_fringe(frequency,T2,phase,contrast,offset,t):
return contrast*np.exp(-t/T2)*(np.cos(np.pi*frequency*t+phase)**2-.5)+.5+offset
if 'fit_init_phase' in info: fit_init_phase=info['fit_init_phase']
else: fit_init_phase=0
if 'fit_init_contrast' in info: fit_init_contrast=info['fit_init_contrast']
开发者ID:EQ4,项目名称:resonator,代码行数:31,代码来源:RabiRamseyFitter.py
示例8: fit
evolution = evo.rabiflop(nb(),omega(),sideband,x)
return evolution
fitting_region = np.where(flop_x_axis <= xmax)
p,success = fit(f, [nb,omega], y = flop_y_axis[fitting_region], x = flop_x_axis[fitting_region])
figure = pyplot.figure()
print "nbar = ",nb()
print "Rabi Frequency (Driving strength) = ", omega()*10**(-3)/(2.*np.pi)," kHz"
# this calls tp to make the plots by the functions defined in TheoryPrediction.py (takes times in units of rabi frequency (driving strength)
sb=tp.Sideband(nb(), sideband=sideband,omega=omega(),nu=2.*np.pi*trap_frequency)
t0=dephasing_time
sb.anaplot(0, xmax*sb.p.omega/(2.*np.pi), 100, t0*sb.p.omega/(2.*np.pi), dephasing=True, discord=False, lsig=True)
m=pylab.unravel_index(np.array(sb.flop).argmax(), np.array(sb.flop).shape)
print 'Flop maximum at {:.2f} us'.format(sb.x[m]*10**6*2.*np.pi/sb.p.omega)+' -> Expected optimal t0 at {:.2f} us'.format(sb.x[m]*10**6*2.*np.pi/sb.p.omega/2.)
# rescale x-axis
sb.x=2.*np.pi*sb.x/sb.p.omega
pyplot.plot(sb.x*10**6,sb.flop)
pyplot.plot(sb.x*10**6,sb.deph)
#pyplot(sb.x,sb.flop)
pyplot.plot(flop_x_axis*10**6,flop_y_axis, '-o')
pyplot.plot(deph_x_axis*10**6,deph_y_axis, '-o')
pyplot.xlabel('t in us')
pyplot.ylim((0,1))
pyplot.ylabel('Population in the D-5/2 state')# + {0:.0f} kHz'.format(ymin))
#pyplot.legend()
pyplot.text(xmax*0.50*10**6,0.73, 'nbar = {:.2f}'.format(nb()))
pyplot.text(xmax*0.50*10**6,0.78, 'Rabi Frequency f = {:.2f} kHz'.format(omega()*10**(-3)/(2.*np.pi)))
开发者ID:EQ4,项目名称:resonator,代码行数:31,代码来源:PlotAndFitLD.py
示例9: makeplot
def makeplot(self,tmin,tmax,steps,nsteps=-1,dephasing=True,lsig=True,coh=True,discord=False,adiscord=False,ndiscord=False,t0=0,num=True,nmax=50.,amax=10000.,statusreport=False,plotgroundstatepop=False):
nbar=self.nbar
sideband=self.sideband
delta = self.delta
nu = self.nu
omega = self.omega
state = self.state
if discord:
adiscord=ndiscord=True
ymin=0
ymax=1
ysmin=0
ysmax=.5
fig1=pyplot.figure()
dyn=Sideband(nbar,sideband=sideband,delta = delta,nu = nu,omega = omega,amax=amax,state=state,plotgroundstatepop=plotgroundstatepop)
dyn.anaplot(tmin,tmax,steps,t0=t0,lsig=lsig,discord=adiscord,dephasing=dephasing)
if coh and not num:
print 'Warning: Coherences can only be plotted if numerical plot is used'
if ndiscord and not num and not discord:
print 'Warning: Numerical discord can only be plotted if numerical plot is used'
if lsig and not dephasing:
print 'Warning: Local signal is plotted without dephasing plot'
numplot=0
coplot=0
lsplot=0
discplot=0
if num:
numplot=1
if coh:
coplot=1
if lsig:
lsplot=1
if adiscord or (ndiscord and num):
discplot=1
pyplot.subplot(1+lsplot+discplot,1+numplot+coplot,1)
pyplot.title('Analytical, RWA, '+state)
pyplot.plot(dyn.x,dyn.flop)
pyplot.ylim( (ymin, ymax) )
pyplot.xlim( (tmin, tmax) )
m=pylab.unravel_index(np.array(dyn.flop).argmax(), np.array(dyn.flop).shape)
print 'Flop maximum at {:.2f}'.format(dyn.x[m])+' -> Expected optimal t0 at {:.2f}'.format(dyn.x[m]/2.)
if plotgroundstatepop:
st='ground '
else:
st='excited '
pyplot.ylabel(st+'state population')
s='nbar = {:.2f}'.format(nbar)+', amax = {:.1f}'.format(dyn.p.amax)+', sideband = {:.0f}'.format(sideband)
if num:
if nsteps==-1:
nsteps=steps
ndyn=numSideband(nbar,sideband=sideband,delta = delta,nu = nu,omega = omega,nmax=nmax,plotgroundstatepop=plotgroundstatepop)
if state=='therm':
r=ndyn.gibbsstate()
elif state=='coh':
r=ndyn.coherentstate()
else:
print 'Error, initial state not recognized.'
s=s+', purity = {:.4f}'.format(np.trace(np.dot(r,r)))+', nmax = {0}'.format(nmax)
if dephasing:
pyplot.plot(dyn.x,dyn.deph)
pyplot.axvline(x=t0,ls=':',color='k')
s=s+', t0 = {0}'.format(t0)
pyplot.annotate(s, xy=(0.,-0.1-1.3*(lsplot+discplot)), xycoords='axes fraction')
if lsig:
pyplot.subplot(1+lsplot+discplot,1+numplot+coplot,2+numplot+coplot)
pyplot.plot(dyn.x,dyn.lsig)
pyplot.ylim( (ysmin, ysmax) )
pyplot.xlim( (tmin, tmax) )
pyplot.axvline(x=t0,ls=':',color='k')
pyplot.ylabel('local signal')
if adiscord:
pyplot.subplot(1+lsplot+discplot,1+numplot+coplot,2+coplot+lsplot*(1+numplot+coplot)+numplot)
pyplot.plot(dyn.x,dyn.disc)
pyplot.ylabel('discord')
pyplot.xlim( (tmin, tmax) )
pyplot.axvline(x=t0,ls=':',color='k')
if num:
ndyn.numplot(r,tmin,tmax,nsteps,t0=t0,lsig=lsig,discord=ndiscord,coh=coh,statusreport=statusreport,dephasing=dephasing)
pyplot.subplot(1+lsplot+discplot,1+numplot+coplot,1+numplot)
pyplot.title('Numerical, no RWA, '+state)
pyplot.plot(ndyn.x,ndyn.flop)
pyplot.ylim( (ymin, ymax) )
pyplot.xlim( (tmin, tmax) )
if dephasing:
pyplot.axvline(x=t0,ls=':',color='k')
pyplot.plot(ndyn.x,ndyn.deph)
if lsig:
pyplot.subplot(1+lsplot+discplot,1+numplot+coplot,3+numplot+coplot)
pyplot.plot(ndyn.x,ndyn.lsig)
pyplot.ylim( (ysmin, ysmax) )
pyplot.axvline(x=t0,ls=':',color='k')
pyplot.xlim( (tmin, tmax) )
#.........这里部分代码省略.........
开发者ID:EQ4,项目名称:resonator,代码行数:101,代码来源:TheoryPrediction.py
示例10: get_nbar
def get_nbar(flop_directory,blue_file,red_file,fit_until=U.WithUnit(1000.0,'us'),show=False):
print 'obtaining nbar from peak ratio of red and blue flop ...',
#parameters and initial guesses for fit
sideband = 1.0
amax=2000.0
f_Rabi_init = U.WithUnit(150.0,'kHz')
nb_init = 0.1
delta_init = U.WithUnit(1000.0,'Hz')
fit_range_min=U.WithUnit(0.0,'us')
fit_range_max=fit_until
delta_fluc_init=U.WithUnit(100.0,'Hz')
#actual script starts here
class Parameter:
def __init__(self, value):
self.value = value
def set(self, value):
self.value = value
def __call__(self):
return self.value
def fit(function, parameters, y, x = None):
def f(params):
i = 0
for p in parameters:
p.set(params[i])
i += 1
return y - function(x)
if x is None: x = np.arange(y.shape[0])
p = [param() for param in parameters]
return optimize.leastsq(f, p)
#get access to servers
cxn = labrad.connect('192.168.169.197', password = 'lab')
dv = cxn.data_vault
#get trap frequency
dv.cd(flop_directory)
dv.cd(blue_file)
dv.open(1)
sideband_selection = dv.get_parameter('RabiFlopping.sideband_selection')
sb = np.array(sideband_selection)
trap_frequencies = ['TrapFrequencies.radial_frequency_1','TrapFrequencies.radial_frequency_2','TrapFrequencies.axial_frequency','TrapFrequencies.rf_drive_frequency']
trap_frequency = dv.get_parameter(str(np.array(trap_frequencies)[sb.nonzero()][0]))
#SET PARAMETERS
nb = Parameter(nb_init)
f_Rabi = Parameter(f_Rabi_init['Hz'])
delta = Parameter(delta_init['Hz'])
delta_fluc=Parameter(delta_fluc_init['Hz'])
#which to fit?
fit_params = [nb,f_Rabi,delta,delta_fluc]
# take Rabi flops
data = dv.get().asarray
blue_flop_y_axis = data[:,1]
blue_flop_x_axis = data[:,0]*10**(-6)
dv.cd(1)
dv.cd(red_file)
dv.open(1)
data = dv.get().asarray
red_flop_y_axis = data[:,1]
red_flop_x_axis = data[:,0]*10**(-6)
#fit Rabi Flops to theory
blue_evo=tp.time_evolution(trap_frequency, sideband,nmax = amax)
def blue_f(x):
evolution = blue_evo.state_evolution_fluc(x,nb(),f_Rabi(),delta(),delta_fluc())
return evolution
red_evo=tp.time_evolution(trap_frequency, -sideband,nmax = amax)
def red_f(x):
evolution = red_evo.state_evolution_fluc(x,nb(),f_Rabi(),delta(),delta_fluc())
return evolution
#FIT BLUE
fitting_region = np.where((blue_flop_x_axis >= fit_range_min['s'])&(blue_flop_x_axis <= fit_range_max['s']))
fit(blue_f, fit_params, y = blue_flop_y_axis[fitting_region], x = blue_flop_x_axis[fitting_region])
blue_nicer_resolution = np.linspace(0,blue_flop_x_axis.max(),1000)
blue_flop_fit_y_axis = blue_evo.state_evolution_fluc(blue_nicer_resolution, nb(), f_Rabi(), delta(),delta_fluc())
m=pylab.unravel_index(np.array(blue_flop_fit_y_axis).argmax(), np.array(blue_flop_fit_y_axis).shape)
blue_max = np.array(blue_flop_fit_y_axis).max()
fit_params = [nb,delta,delta_fluc]
#FIT RED
fitting_region = np.where((red_flop_x_axis >= fit_range_min['s'])&(red_flop_x_axis <= fit_range_max['s']))
fit(red_f, fit_params, y = red_flop_y_axis[fitting_region], x = red_flop_x_axis[fitting_region])
red_nicer_resolution = np.linspace(0,red_flop_x_axis.max(),1000)
red_flop_fit_y_axis = red_evo.state_evolution_fluc(red_nicer_resolution, nb(), f_Rabi(), delta(),delta_fluc())
red_max = red_flop_fit_y_axis[m]
#.........这里部分代码省略.........
开发者ID:EQ4,项目名称:resonator,代码行数:101,代码来源:getnbar.py
示例11: fit
#FIT BLUE
fitting_region = np.where((blue_flop_x_axis >= fit_range_min['s'])&(blue_flop_x_axis <= fit_range_max['s']))
print 'Fitting blue...'
p,success = fit(blue_f, fit_params, y = blue_flop_y_axis[fitting_region], x = blue_flop_x_axis[fitting_region])
print 'Fitting DONE.'
print "nbar = {}".format(nb())
print "Rabi Frequency = {} kHz".format(f_Rabi()*10**(-3))
print "The detuning is ({:.2f} +- {:.2f}) kHz".format(delta()*10**-3,np.abs(delta_fluc())*10**-3)
blue_nicer_resolution = np.linspace(0,blue_flop_x_axis.max(),1000)
blue_flop_fit_y_axis = blue_evo.state_evolution_fluc(blue_nicer_resolution, nb(), f_Rabi(), delta(),delta_fluc())
m=pylab.unravel_index(np.array(blue_flop_fit_y_axis).argmax(), np.array(blue_flop_fit_y_axis).shape)
print 'blue sideband highest peak value = {} at {}'.format(np.array(blue_flop_fit_y_axis).max(),10**6*blue_nicer_resolution[m])
blue_max = np.array(blue_flop_fit_y_axis).max()
blue_fit_nbar = nb()
fit_params = [nb,delta,delta_fluc]
#FIT RED
fitting_region = np.where((red_flop_x_axis >= fit_range_min['s'])&(red_flop_x_axis <= fit_range_max['s']))
print 'Fitting red...'
p,success = fit(red_f, fit_params, y = red_flop_y_axis[fitting_region], x = red_flop_x_axis[fitting_region])
print 'Fitting DONE.'
print "red nbar = {}".format(nb())
print "Rabi Frequency = {} kHz".format(f_Rabi()*10**(-3))
print "The detuning is ({:.2f} +- {:.2f}) kHz".format(delta()*10**-3,np.abs(delta_fluc())*10**-3)
开发者ID:HaeffnerLab,项目名称:cct,代码行数:30,代码来源:getandplotnbar.py
注:本文中的matplotlib.pylab.unravel_index函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论