本文整理汇总了Python中matplotlib.pylab.title函数的典型用法代码示例。如果您正苦于以下问题:Python title函数的具体用法?Python title怎么用?Python title使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了title函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: plot_experiment_stats
def plot_experiment_stats(e):
sample_data = np.where(e.num_test_genotypes(SAMPLE) > 0)[0]
c_sample = (100.0 * e.called(SAMPLE)[sample_data]) / e.num_test_genotypes(SAMPLE)[sample_data] + 1e-15
fill = 100.*e.fill[sample_data]
snp_data = np.where(e.num_test_genotypes(SNP) > 0)[0]
c_snp = (100.0 * e.called(SNP)[snp_data]) / e.num_test_genotypes(SNP)[snp_data]
# Call % vs. fill %
P.figure(1);
P.clf();
P.plot(fill, c_sample, 'o')
P.xlabel('Fill %')
P.ylabel('Call %')
P.title('Validation Breakdown by Sample, %.2f%% Deleted. r = %.2f' %
(100.0 * e.fraction, np.corrcoef(fill + SMALL_FLOAT, c_sample + SMALL_FLOAT)[0, 1],))
# Call % vs. SNP
P.figure(2);
P.clf();
P.plot(snp_data, c_snp, 'o')
P.xlabel('SNP #')
P.ylabel('Call %')
P.title('Validation Breakdown by SNP, %.2f%% Deleted' % (100.0 * e.fraction,))
return (np.array([snp_data, c_snp]).transpose(),
np.array([sample_data, c_sample, fill]).transpose())
开发者ID:orenlivne,项目名称:ober,代码行数:27,代码来源:plots.py
示例2: study_redmapper_2d
def study_redmapper_2d():
# I just want to know the typical angular separation for RM clusters.
# I'm going to do this in a lazy way.
hemi = 'north'
rm = load_redmapper(hemi=hemi)
ra = rm['ra']
dec = rm['dec']
ncl = len(ra)
dist = np.zeros((ncl, ncl))
for i in range(ncl):
this_ra = ra[i]
this_dec = dec[i]
dra = this_ra-ra
ddec = this_dec-dec
dxdec = dra*np.cos(this_dec*np.pi/180.)
dd = np.sqrt(dxdec**2. + ddec**2.)
dist[i,:] = dd
dist[i,i] = 99999999.
d_near_arcmin = dist.min(0)*60.
pl.clf(); pl.hist(d_near_arcmin, bins=100)
pl.title('Distance to Nearest Neighbor for RM clusters')
pl.xlabel('Distance (arcmin)')
pl.ylabel('N')
fwhm_planck_217 = 5.5 # arcmin
sigma = fwhm_planck_217/2.355
frac_2sigma = 1.*len(np.where(d_near_arcmin>2.*sigma)[0])/len(d_near_arcmin)
frac_3sigma = 1.*len(np.where(d_near_arcmin>3.*sigma)[0])/len(d_near_arcmin)
print '%0.3f percent of RM clusters are separated by 2-sigma_planck_beam'%(100.*frac_2sigma)
print '%0.3f percent of RM clusters are separated by 3-sigma_planck_beam'%(100.*frac_3sigma)
ipdb.set_trace()
开发者ID:amanzotti,项目名称:vksz,代码行数:30,代码来源:vksz.py
示例3: plot_values
def plot_values(self, TITLE, SAVE):
plot(self.list_of_densities, self.list_of_pressures)
title(TITLE)
xlabel("Densities")
ylabel("Pressure")
savefig(SAVE)
show()
开发者ID:Schoyen,项目名称:molecular-dynamics-fys3150,代码行数:7,代码来源:PlotPressureNumber.py
示例4: pie
def pie(self, key_word_sep=" ", title=None, **kwargs):
"""Generates a pylab pie chart from the result set.
``matplotlib`` must be installed, and in an
IPython Notebook, inlining must be on::
%%matplotlib inline
Values (pie slice sizes) are taken from the
rightmost column (numerical values required).
All other columns are used to label the pie slices.
Parameters
----------
key_word_sep: string used to separate column values
from each other in pie labels
title: Plot title, defaults to name of value column
Any additional keyword arguments will be passsed
through to ``matplotlib.pylab.pie``.
"""
self.guess_pie_columns(xlabel_sep=key_word_sep)
import matplotlib.pylab as plt
pie = plt.pie(self.ys[0], labels=self.xlabels, **kwargs)
plt.title(title or self.ys[0].name)
return pie
开发者ID:RedBrainLabs,项目名称:ipython-sql,代码行数:26,代码来源:run.py
示例5: plot_grid_experiment_results
def plot_grid_experiment_results(grid_results, params, metrics):
global plt
params = sorted(params)
grid_params = grid_results.grid_params
plt.figure(figsize=(8, 6))
for metric in metrics:
grid_params_shape = [len(grid_params[k]) for k in sorted(grid_params.keys())]
params_max_out = [(1 if k in params else 0) for k in sorted(grid_params.keys())]
results = np.array([e.results.get(metric, 0) for e in grid_results.experiments])
results = results.reshape(*grid_params_shape)
for axis, included_in_params in enumerate(params_max_out):
if not included_in_params:
results = np.apply_along_axis(np.max, axis, results)
print results
params_shape = [len(grid_params[k]) for k in sorted(params)]
results = results.reshape(*params_shape)
if len(results.shape) == 1:
results = results.reshape(-1,1)
import matplotlib.pylab as plt
#f.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95)
plt.imshow(results, interpolation='nearest', cmap=plt.cm.hot)
plt.title(str(grid_results.name) + " " + metric)
if len(params) == 2:
plt.xticks(np.arange(len(grid_params[params[1]])), grid_params[params[1]], rotation=45)
plt.yticks(np.arange(len(grid_params[params[0]])), grid_params[params[0]])
plt.colorbar()
plt.show()
开发者ID:gmum,项目名称:mlls2015,代码行数:31,代码来源:utils.py
示例6: test_flux
def test_flux(self):
tol = 150.
inputcat = catalog.read(os.path.join(self.args.tmp_path, 'ccd_1.cat'))
pixradius = 3*self.target["psf"]/self.instrument["PIXEL_SCALE"]
positions = list(zip(inputcat["X_IMAGE"]-1, inputcat["Y_IMAGE"]-1))
fluxes = image.simple_aper_phot(self.im[1], positions, pixradius)
sky_background = image.annulus_photometry(self.im[1], positions,
pixradius+5, pixradius+8)
total_bg_pixels = np.shape(image.build_annulus_mask(pixradius+5, pixradius+8, positions[0]))[1]
total_source_pixels = np.shape(image.build_circle_mask(pixradius,
positions[0]))[1]
estimated_fluxes = fluxes - sky_background*1./total_bg_pixels*total_source_pixels
estimated_magnitude = image.flux2mag(estimated_fluxes,
self.im[1].header['SIMMAGZP'], self.target["exptime"])
expected_flux = image.mag2adu(17.5, self.target["zeropoint"][0],
exptime=self.target["exptime"])
p.figure()
p.hist(fluxes, bins=50)
p.title('Expected flux: {:0.2f}, mean flux: {:1.2f}'.format(expected_flux, np.mean(estimated_fluxes)))
p.savefig(os.path.join(self.figdir,'Fluxes.png'))
assert np.all(np.abs(fluxes-expected_flux) < tol)
开发者ID:rfahed,项目名称:extProcess,代码行数:27,代码来源:photometry_test.py
示例7: ACF_PACF_plot
def ACF_PACF_plot(self):
#plot ACF and PACF to find the number of terms needed for the AR and MA in ARIMA
# ACF finds MA(q): cut off after x lags
# and PACF finds AR (p): cut off after y lags
# in ARIMA(p,d,q)
lag_acf = acf(self.ts_log_diff, nlags=20)
lag_pacf = pacf(self.ts_log_diff, nlags=20, method='ols')
#Plot ACF:
ax=plt.subplot(121)
plt.plot(lag_acf)
ax.set_xlim([0,5])
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y= -1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.axhline(y= 1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.title('Autocorrelation Function')
#Plot PACF:
plt.subplot(122)
plt.plot(lag_pacf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y= -1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.axhline(y=1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color='gray')
plt.title('Partial Autocorrelation Function')
plt.tight_layout()
开发者ID:greatObelix,项目名称:datatoolbox,代码行数:25,代码来源:timeseries.py
示例8: flipPlot
def flipPlot(minExp, maxExp):
"""假定minEXPy和maxExp是正整数且minExp<maxExp
绘制出2**minExp到2**maxExp次抛硬币的结果
"""
ratios = []
diffs = []
aAxis = []
for i in range(minExp, maxExp+1):
aAxis.append(2**i)
for numFlips in aAxis:
numHeads = 0
for n in range(numFlips):
if random.random() < 0.5:
numHeads += 1
numTails = numFlips - numHeads
ratios.append(numHeads/numFlips)
diffs.append(abs(numHeads-numTails))
plt.figure()
ax1 = plt.subplot(121)
plt.title("Difference Between Heads and Tails")
plt.xlabel('Number of Flips')
plt.ylabel('Abs(#Heads - #Tails)')
ax1.semilogx(aAxis, diffs, 'bo')
ax2 = plt.subplot(122)
plt.title("Heads/Tails Ratios")
plt.xlabel('Number of Flips')
plt.ylabel("#Heads/#Tails")
ax2.semilogx(aAxis, ratios, 'bo')
plt.show()
开发者ID:xiaohu2015,项目名称:ProgrammingPython_notes,代码行数:29,代码来源:chapter12.py
示例9: XXtest5_regrid
def XXtest5_regrid(self):
srcF = cdms2.open(sys.prefix + \
'/sample_data/so_Omon_ACCESS1-0_historical_r1i1p1_185001-185412_2timesteps.nc')
so = srcF('so')[0, 0, ...]
clt = cdms2.open(sys.prefix + '/sample_data/clt.nc')('clt')
dstData = so.regrid(clt.getGrid(),
regridTool = 'esmf',
regridMethod='conserve')
if self.pe == 0:
dstDataMask = (dstData == so.missing_value)
dstDataFltd = dstData * (1 - dstDataMask)
zeroValCnt = (dstData == 0).sum()
if so.missing_value > 0:
dstDataMin = dstData.min()
dstDataMax = dstDataFltd.max()
else:
dstDataMin = dstDataFltd.min()
dstDataMax = dstData.max()
zeroValCnt = (dstData == 0).sum()
print 'Number of zero valued cells', zeroValCnt
print 'min/max value of dstData: %f %f' % (dstDataMin, dstDataMax)
self.assertLess(dstDataMax, so.max())
if False:
pylab.figure(1)
pylab.pcolor(so, vmin=20, vmax=40)
pylab.colorbar()
pylab.title('so')
pylab.figure(2)
pylab.pcolor(dstData, vmin=20, vmax=40)
pylab.colorbar()
pylab.title('dstData')
开发者ID:NCPP,项目名称:uvcdat-devel,代码行数:32,代码来源:testEsmfSalinity.py
示例10: EnhanceContrast
def EnhanceContrast(g, r=3, op_kernel=15, silence=True):
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(op_kernel,op_kernel))
opening = cv2.morphologyEx(g, cv2.MORPH_OPEN, kernel)
g_copy = np.asarray(np.copy(g), dtype=np.float)
m_f = np.mean(opening)
u_max = 245; u_min = 10; t_min = np.min(g); t_max = np.max(g)
idx_gt_mf = np.where(g_copy > m_f)
idx_lt_mf = np.where(g_copy <= m_f)
g_copy[idx_gt_mf] = -0.5 * ((u_max-u_min) / (m_f-t_max)**r) * (g_copy[idx_gt_mf]-t_max)**r + u_max
g_copy[idx_lt_mf] = 0.5 * ((u_max-u_min) / (m_f-t_min)**r) * (g_copy[idx_lt_mf]-t_min)**r + u_min
if silence == False:
plt.subplot(1,2,1)
plt.imshow(g, cmap='gray')
plt.title('Original image')
plt.subplot(1,2,2)
plt.imshow(g_copy, cmap='gray')
plt.title('Enhanced image')
plt.show()
return g_copy
开发者ID:IreneFidone,项目名称:TUC-Team,代码行数:27,代码来源:Microaneurisms.py
示例11: predict
def predict(self,train,test,w,progress=False):
'''
1-nearest neighbor classification algorithm using LB_Keogh lower
bound as similarity measure. Option to use DTW distance instead
but is much slower.
'''
for ind,i in enumerate(test):
if progress:
print str(ind+1)+' points classified'
min_dist=float('inf')
closest_seq=[]
for j in train:
if self.LB_Keogh(i,j[:-1],5)<min_dist:
dist=self.DTWDistance(i,j[:-1],w)
if dist<min_dist:
min_dist=dist
closest_seq=j
self.preds.append(closest_seq[-1])
if self.plotter:
plt.plot(i)
plt.plot(closest_seq[:-1])
plt.legend(['Test Series','Nearest Neighbor in Training Set'])
plt.title('Nearest Neighbor in Training Set - Prediction ='+str(closest_seq[-1]))
plt.show()
开发者ID:RichardeJiang,项目名称:classification,代码行数:26,代码来源:ts_classifier.py
示例12: static_view
def static_view(self, m=0, n=1, NS=100):
"""=============================================================
Grafica Estatica (m,n) Modo normal:
Realiza un grafico de densidad del modo de oscilación (m,n)
de la membrana circular en el tiempo t=0
ARGUMENTOS:
*Numero cuantico angular m
*Numero cuantico radial n
*Resolucion del grid (100 por defecto) NS
============================================================="""
# Grid
XM = np.linspace(-1 * self.R, 1 * self.R, NS)
YM = np.linspace(1 * self.R, -1 * self.R, NS)
# ---------------------------------------------------------------
Z = np.zeros((NS, NS))
for i in xrange(0, NS):
for j in xrange(0, NS):
xd = XM[i]
yd = YM[j]
rd = (xd ** 2 + yd ** 2) ** 0.5
thd = np.arctan(yd / xd)
if xd < 0:
thd = np.pi + thd
if rd < self.R:
Z[j, i] = self.f(rd, thd, 0, m, n)
# ---------------------------------------------------------------
Z[0, 0] = -1
Z[1, 0] = 1
plt.xlabel("X (-R,R)")
plt.ylabel("Y (-R,R)")
plt.title("Circular Membrane: (%d,%d) mode" % (m, n))
plt.imshow(Z)
plt.show()
开发者ID:sbustamante,项目名称:Computacional-OscilacionesOndas,代码行数:35,代码来源:demo3_01.py
示例13: plot_waveforms
def plot_waveforms(time,voltage,APTimes,titlestr):
"""
plot_waveforms takes four arguments - the recording time array, the voltage
array, the time of the detected action potentials, and the title of your
plot. The function creates a labeled plot showing the waveforms for each
detected action potential
"""
plt.figure()
## Your Code Here
indices = []
for x in range(len(APTimes)):
for i in range(len(time)):
if(time[i]==APTimes[x]):
indices.append(i)
##print indices
Xval = np.linspace(-.003,.003,200)
print len(Xval)
for x in range(len(APTimes)):
plt.plot(Xval, voltage[indices[x]-100:indices[x]+100])
plt.title(titlestr)
plt.xlabel('Time (s)')
plt.ylabel('Voltage (uV)')
plt.hold(True)
plt.show()
开发者ID:cbuscaron,项目名称:NeuralData,代码行数:32,代码来源:problem_set1.py
示例14: fancy_dendrogram
def fancy_dendrogram(*args, **kwargs):
'''
Source: https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/
'''
from scipy.cluster import hierarchy
import matplotlib.pylab as plt
max_d = kwargs.pop('max_d', None)
if max_d and 'color_threshold' not in kwargs:
kwargs['color_threshold'] = max_d
annotate_above = kwargs.pop('annotate_above', 0)
ddata = hierarchy.dendrogram(*args, **kwargs)
if not kwargs.get('no_plot', False):
plt.title('Hierarchical Clustering Dendrogram (truncated)')
plt.xlabel('sample index or (cluster size)')
plt.ylabel('distance')
for i, d, c in zip(ddata['icoord'], ddata['dcoord'], ddata['color_list']):
x = 0.5 * sum(i[1:3])
y = d[1]
if y > annotate_above:
plt.plot(x, y, 'o', c=c)
plt.annotate("%.3g" % y, (x, y), xytext=(0, -5),
textcoords='offset points',
va='top', ha='center')
if max_d:
plt.axhline(y=max_d, c='k')
return ddata
开发者ID:getsmarter,项目名称:bda,代码行数:29,代码来源:fancy_dendrogram.py
示例15: plot_histogram
def plot_histogram(self, main="", numrows=1, numcols=1, fignum=1):
"""Plot a histogram of choices and probability sums. Expects probabilities as (at least) a 2D array.
"""
from matplotlib.pylab import bar, xticks, yticks, title, text, axis, figure, subplot
probabilities = self.get_probabilities()
if probabilities.ndim < 2:
raise StandardError, "probabilities must have at least 2 dimensions."
alts = probabilities.shape[1]
width_par = (1 / alts + 1) / 2.0
choice_counts = self.get_choice_histogram(0, alts)
sum_probs = self.get_probabilities_sum()
subplot(numrows, numcols, fignum)
bar(arange(alts), choice_counts, width=width_par)
bar(arange(alts) + width_par, sum_probs, width=width_par, color="g")
xticks(arange(alts))
title(main)
Axis = axis()
text(
alts + 0.5,
-0.1,
"\nchoices histogram (blue),\nprobabilities sum (green)",
horizontalalignment="right",
verticalalignment="top",
)
开发者ID:apdjustino,项目名称:DRCOG_Urbansim,代码行数:26,代码来源:upc_sequence.py
示例16: plot_feat_hist
def plot_feat_hist(data_name_list, filename=None):
pylab.clf()
# import pdb;pdb.set_trace()
num_rows = 1 + (len(data_name_list) - 1) / 2
num_cols = 1 if len(data_name_list) == 1 else 2
pylab.figure(figsize=(5 * num_cols, 4 * num_rows))
for i in range(num_rows):
for j in range(num_cols):
pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
x, name = data_name_list[i * num_cols + j]
pylab.title(name)
pylab.xlabel('Value')
pylab.ylabel('Density')
# the histogram of the data
max_val = np.max(x)
if max_val <= 1.0:
bins = 50
elif max_val > 50:
bins = 50
else:
bins = max_val
n, bins, patches = pylab.hist(
x, bins=bins, normed=1, facecolor='green', alpha=0.75)
pylab.grid(True)
if not filename:
filename = "feat_hist_%s.png" % name
pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
开发者ID:Axighi,项目名称:Scripts,代码行数:31,代码来源:utils.py
示例17: plot_histogram_with_capacity
def plot_histogram_with_capacity(self, capacity, main=""):
"""Plot histogram of choices and capacities. The number of alternatives is determined
from the second dimension of probabilities.
"""
from matplotlib.pylab import bar, xticks, yticks, title, text, axis, figure, subplot
probabilities = self.get_probabilities()
if probabilities.ndim < 2:
raise StandardError, "probabilities must have at least 2 dimensions."
alts = self.probabilities.shape[1]
width_par = (1 / alts + 1) / 2.0
choice_counts = self.get_choice_histogram(0, alts)
sum_probs = self.get_probabilities_sum()
subplot(212)
bar(arange(alts), choice_counts, width=width_par)
bar(arange(alts) + width_par, capacity, width=width_par, color="r")
xticks(arange(alts))
title(main)
Axis = axis()
text(
alts + 0.5,
-0.1,
"\nchoices histogram (blue),\ncapacities (red)",
horizontalalignment="right",
verticalalignment="top",
)
开发者ID:apdjustino,项目名称:DRCOG_Urbansim,代码行数:27,代码来源:upc_sequence.py
示例18: viz_docwordfreq_sidebyside
def viz_docwordfreq_sidebyside(P1, P2, title1='', title2='',
vmax=None, aspect=None, block=False):
from matplotlib import pylab
pylab.figure()
if vmax is None:
vmax = 1.0
P1limit = np.percentile(P1.flatten(), 97)
if P2 is not None:
P2limit = np.percentile(P2.flatten(), 97)
else:
P2limit = P1limit
while vmax > P1limit and vmax > P2limit:
vmax = 0.8 * vmax
if aspect is None:
aspect = float(P1.shape[1])/P1.shape[0]
pylab.subplot(1, 2, 1)
pylab.imshow(P1, aspect=aspect, interpolation='nearest', vmin=0, vmax=vmax)
if len(title1) > 0:
pylab.title(title1)
if P2 is not None:
pylab.subplot(1, 2, 2)
pylab.imshow(P2, aspect=aspect, interpolation='nearest', vmin=0, vmax=vmax)
if len(title2) > 0:
pylab.title(title2)
pylab.show(block=block)
开发者ID:agile-innovations,项目名称:refinery,代码行数:27,代码来源:BirthMoveTopicModel.py
示例19: handle
def handle(self, *args, **options):
try:
from matplotlib import pylab as pl
import numpy as np
except ImportError:
raise Exception('Be sure to install requirements_scipy.txt before running this.')
all_names_and_counts = RawCommitteeTransactions.objects.all().values('attest_by_name').annotate(total=Count('attest_by_name')).order_by('-total')
all_names_and_counts_as_tuple_and_sorted = sorted([(row['attest_by_name'], row['total']) for row in all_names_and_counts], key=lambda row: row[1])
print "top ten attestors: (name, number of transactions they attest for)"
for row in all_names_and_counts_as_tuple_and_sorted[-10:]:
print row
n_bins = 100
filename = 'attestor_participation_distribution.png'
x_max = all_names_and_counts_as_tuple_and_sorted[-31][1] # eliminate top outliers from hist
x_min = all_names_and_counts_as_tuple_and_sorted[0][1]
counts = [row['total'] for row in all_names_and_counts]
pl.figure(1, figsize=(18, 6))
pl.hist(counts, bins=np.arange(x_min, x_max, (float(x_max)-x_min)/100) )
pl.title('Histogram of Attestor Participation in RawCommitteeTransactions')
pl.xlabel('Number of transactions a person attested for')
pl.ylabel('Number of people')
pl.savefig(filename)
开发者ID:avaleske,项目名称:hackor,代码行数:26,代码来源:graph_dist_of_attestor_contribution_in_CommTrans.py
示例20: plot_confusion_matrix
def plot_confusion_matrix(cm, title='', cmap=plt.cm.Blues):
#print cm
#display vehicle, idle, walking accuracy respectively
#display overall accuracy
print type(cm)
# plt.figure(index
plt.imshow(cm, interpolation='nearest', cmap=cmap)
#plt.figure("")
plt.title("Confusion Matrix")
plt.colorbar()
tick_marks = [0,1,2]
target_name = ["driving","idling","walking"]
plt.xticks(tick_marks,target_name,rotation=45)
plt.yticks(tick_marks,target_name,rotation=45)
print len(cm[0])
for i in range(0,3):
for j in range(0,3):
plt.text(i,j,str(cm[i,j]))
plt.tight_layout()
plt.ylabel("Actual Value")
plt.xlabel("Predicted Outcome")
开发者ID:sb1989,项目名称:fyp,代码行数:25,代码来源:KNNClassifierAccuracy.py
注:本文中的matplotlib.pylab.title函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论