本文整理汇总了Python中matplotlib.pylab.tight_layout函数的典型用法代码示例。如果您正苦于以下问题:Python tight_layout函数的具体用法?Python tight_layout怎么用?Python tight_layout使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了tight_layout函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: measure_psf
def measure_psf(vignet, pixscale=1., show=False, mask_value=None):
y, x = np.mgrid[-vignet.shape[0]/2:vignet.shape[0]/2, -vignet.shape[1]/2:vignet.shape[1]/2]*pixscale
if mask_value :
vignet = ma.masked_values(vignet, mask_value).filled(0)
# Fit the data using astropy.modeling
p_init=models.Gaussian2D(amplitude=vignet.max(), x_mean=0., y_mean=0.,
x_stddev=2*pixscale, y_stddev=2*pixscale, theta=0, cov_matrix=None)
fit_p = fitting.LevMarLSQFitter()
p = fit_p(p_init, x, y, vignet)
barycenter=measure_barycenter(vignet, pixscale=pixscale)
# Plot the data with the best-fit model
P.figure(figsize=(8, 2.5))
P.subplot(1, 3, 1)
P.imshow(vignet, origin='lower', interpolation='nearest', vmin=vignet.min(), vmax=vignet.max())
P.title("Data")
P.subplot(1, 3, 2)
P.imshow(p(x, y), origin='lower', interpolation='nearest', vmin=vignet.min(), vmax=vignet.max())
P.scatter(vignet.shape[0]/2, vignet.shape[1]/2,marker="+")
P.annotate("({:.3f},{:.3f})".format(*barycenter), (vignet.shape[0]/3, vignet.shape[1]/3))
P.title("Model - psf = {:.2f}".format(2.3548*np.mean([p.x_stddev.value, p.y_stddev.value])))
P.subplot(1, 3, 3)
P.imshow(vignet - p(x, y), origin='lower', interpolation='nearest', vmin=-vignet.max()/10,vmax=vignet.max()/10)
P.title("Residual")
P.tight_layout()
if show :
P.show()
return p
开发者ID:rfahed,项目名称:extProcess,代码行数:30,代码来源:image.py
示例2: plot_graph
def plot_graph(self):
'''
plots a matplotlib graph from the stocks data. Dates on the x axis and
Closing Prices on the y axis. Then adds it to the graph_win in the
display frame as a tk widget()
'''
x_axis = [
dt.datetime.strptime(self.daily_data[day][0], '%Y-%m-%d')
for day in range(1, len(self.daily_data) - 1)
]
y_axis = [
self.daily_data[cls_adj][-1]
for cls_adj in range(1, len(self.daily_data) - 1)
]
fig = plt.figure()
ax = fig.add_subplot("111")
ax.plot(
x_axis,
y_axis,
marker='h',
linestyle='-.',
color='r',
label='Daily Adjusted Closing Prices'
)
labels = ax.get_xticklabels()
for label in labels:
label.set_rotation(15)
plt.xlabel('Dates')
plt.ylabel('Close Adj')
plt.legend()
plt.tight_layout() # adjusts the graph to fit in the space its limited to
self.data_plot = FigureCanvasTkAgg(fig, master=self.display)
self.data_plot.show()
self.graph_win = self.data_plot.get_tk_widget()
开发者ID:FinbarT,项目名称:Stocks-plotter-App,代码行数:34,代码来源:Stocks-plotter-App.py
示例3: plot_corner_posteriors
def plot_corner_posteriors(self, savefile=None, labels=["T1", "R1", "Av", "T2", "R2"]):
'''
Plots the corner plot of the MCMC results.
'''
ndim = len(self.sampler.flatchain[0,:])
chain = self.sampler
samples = chain.flatchain
samples = samples[:,0:ndim]
plt.figure(figsize=(8,8))
fig = corner.corner(samples, labels=labels[0:ndim])
plt.title("MJD: %.2f"%self.mjd)
name = self._get_save_path(savefile, "mcmc_posteriors")
plt.savefig(name)
plt.close("all")
plt.figure(figsize=(8,ndim*3))
for n in range(ndim):
plt.subplot(ndim,1,n+1)
chain = self.sampler.chain[:,:,n]
nwalk, nit = chain.shape
for i in np.arange(nwalk):
plt.plot(chain[i], lw=0.1)
plt.ylabel(labels[n])
plt.xlabel("Iteration")
name_walkers = self._get_save_path(savefile, "mcmc_walkers")
plt.tight_layout()
plt.savefig(name_walkers)
plt.close("all")
开发者ID:nblago,项目名称:utils,代码行数:31,代码来源:BBFit.py
示例4: plot
def plot(self,file):
cds = CaseDataset(file, 'bson')
data = cds.data.driver('driver').by_variable().fetch()
cds2 = CaseDataset('../output/therm_mc_20141110173851.bson', 'bson')
data2 = cds2.data.driver('driver').by_variable().fetch()
#temp
temp_boundary_k = data['hyperloop.temp_boundary']
temp_boundary_k.extend(data2['hyperloop.temp_boundary'])
temp_boundary = [((x-273.15)*1.8 + 32) for x in temp_boundary_k]
#histogram
n, bins, patches = plt.hist(temp_boundary, 100, normed=1, histtype='stepfilled')
plt.setp(patches, 'facecolor', 'b', 'alpha', 0.75)
#stats
mean = np.average(temp_boundary)
std = np.std(temp_boundary)
percentile = np.percentile(temp_boundary,99.5)
print "mean: ", mean, " std: ", std, " 99.5percentile: ", percentile
x = np.linspace(50,170,150)
plt.plot(x,mlab.normpdf(x,mean,std), color='black', lw=2)
plt.xlim([60,160])
plt.ylabel('Probability', fontsize=18)
plt.xlabel(u'Equilibrium Temperature, \N{DEGREE SIGN}F', fontsize=18)
#plt.show()
plt.tight_layout()
plt.savefig('../output/histo.pdf', dpi=300)
开发者ID:jcchin,项目名称:Hyperloop,代码行数:27,代码来源:mc_histo.py
示例5: plot_abc
def plot_abc(self, uarg, param):
"""Plot a() and b() functions on the same plot.
"""
plt.figure(figsize=(8, 4))
plt.subplot(1, 3, 1)
plt.plot(uarg, self.afun(uarg, param))
plt.axhline(0)
plt.axvline(0)
plt.ylabel('$a(u)$')
plt.xlabel('$u$')
plt.subplot(1, 3, 2)
plt.plot(uarg, self.bfun(uarg, param))
plt.axhline(0)
plt.axvline(0)
plt.ylabel('$b(u)$')
plt.xlabel('$u$')
plt.subplot(1, 3, 3)
plt.plot(uarg, self.cfun(uarg, param))
plt.axhline(0)
plt.axvline(0)
plt.ylabel('$c(u)$')
plt.xlabel('$u$')
plt.tight_layout()
plt.show()
开发者ID:khrapovs,项目名称:argamma,代码行数:29,代码来源:arg.py
示例6: zsview
def zsview(im, cmap=pl.cm.gray, figsize=(8,5), contours=False, ccolor='r'):
z1, z2 = zscale(im)
pl.figure(figsize=figsize)
pl.imshow(im, vmin=z1, vmax=z2, origin='lower', cmap=cmap, interpolation='none')
if contours:
pl.contour(im, levels=[z2], origin='lower', colors=ccolor)
pl.tight_layout()
开发者ID:cenko,项目名称:RATIR-GSFC,代码行数:7,代码来源:astro_functs.py
示例7: save
def save(self, out_path):
'''Saves a figure for the monitor
Args:
out_path: str
'''
plt.clf()
np.set_printoptions(precision=4)
font = {
'size': 7
}
matplotlib.rc('font', **font)
y = 2
x = ((len(self.d) - 1) // y) + 1
fig, axes = plt.subplots(y, x)
fig.set_size_inches(20, 8)
for j, (k, v) in enumerate(self.d.iteritems()):
ax = axes[j // x, j % x]
ax.plot(v, label=k)
if k in self.d_valid.keys():
ax.plot(self.d_valid[k], label=k + '(valid)')
ax.set_title(k)
ax.legend()
plt.tight_layout()
plt.savefig(out_path, facecolor=(1, 1, 1))
plt.close()
开发者ID:Jeremy-E-Johnson,项目名称:cortex,代码行数:29,代码来源:monitor.py
示例8: run_method_usage
def run_method_usage(methods,cases):
methods = [m[0] for m in methods]
# Bootstrap the percentage error bars:
percents =[]
for i in range(10000):
nc = resample(cases)
percents.append(100*np.sum(nc,axis=0)/len(nc))
percents=np.array(percents)
mean_percents = np.mean(percents,axis=0)
std_percents = np.std(percents,axis=0)*1.96
inds=np.argsort(mean_percents).tolist()
inds.reverse()
avg_usage = np.mean(mean_percents)
fig = plt.figure()
ax = fig.add_subplot(111)
x=np.arange(len(methods))
ax.plot(x,[avg_usage]*len(methods),'-',color='0.25',lw=1,alpha=0.2)
ax.bar(x, mean_percents[inds], 0.6, color=paired[0],linewidth=0,
yerr=std_percents[inds],ecolor=paired[1])
#ax.set_title('Method Occurrence')
ax.set_ylabel('Occurrence %',fontsize=30)
ax.set_xlabel('Method',fontsize=30)
ax.set_xticks(np.arange(len(methods)))
ax.set_xticklabels(np.array(methods)[inds],fontsize=8)
fig.autofmt_xdate()
fix_axes()
plt.tight_layout()
fig.savefig(figure_path+'method_occurrence.pdf', bbox_inches=0)
fig.show()
return inds,mean_percents[inds]
开发者ID:IDEALLab,项目名称:design_method_recommendation_JMD_2014,代码行数:30,代码来源:paper_experiments.py
示例9: plot
def plot(rho, u, uLB, tau, rho_history, zdjecia, image, nx, maxIter ):
# plt.figure(figsize=(15,15))
# plt.subplot(4, 1, 1)
# plt.imshow(u[1,:,0:50],vmin=-uLB*.15, vmax=uLB*.15, interpolation='none')#,cmap=cm.seismic
# plt.colorbar()
plt.rcParams["figure.figsize"] = (15,15)
plt.subplot(5, 1, 1)
plt.imshow(sqrt(u[0]**2+u[1]**2),vmin=0, vmax=uLB*1.6)#,cmap=cm.seismic
plt.colorbar()
plt.title('tau = {:f}'.format(tau))
plt.subplot(5, 1, 2)
plt.imshow(u[0,:,:30], interpolation='none')#,cmap=cm.seismicvmax=uLB*1.6,
plt.colorbar()
plt.title('tau = {:f}'.format(tau))
plt.subplot(5, 1, 3)
plt.imshow(rho, interpolation='none' )#,cmap=cm.seismic
plt.title('rho')
plt.subplot(5, 1,4)
plt.title(' history rho')
plt.plot(linspace(0,len(rho_history),len(rho_history)),rho_history)
plt.xlim([0,maxIter])
plt.subplot(5, 1,5)
plt.title(' u0 middle develop')
plt.plot(linspace(0,nx,len(u[0,20,:])), u[1,20,:])
plt.tight_layout()
plt.savefig(path.join(zdjecia,'f{0:06d}.png'.format(image)))
plt.clf();
开发者ID:ricevind,项目名称:LB_core,代码行数:32,代码来源:symplot.py
示例10: do_plot_extras
def do_plot_extras(self, extra):
""" Plot other observed quantities as a function of time.
Parameters
----------
extra: string
One of the quantities available in system.extras
"""
# import pyqtgraph as pg
colors = 'bgrcmykw' # lets hope for less than 9 data-sets
t = self.time
# handle inexistent field
if extra not in self.extras._fields:
from shell_colors import red
msg = red('ERROR: ') + 'The name "%s" is not available in extras.\n' % extra
clogger.fatal(msg)
return
i = self.extras._fields.index(extra) # index corresponding to this quantity
plt.figure()
# p = pg.plot()
plt.plot(t, self.extras[i], 'o', label=extra)
plt.xlabel('Time [days]')
plt.ylabel(extra + ' []')
plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.05))
plt.minorticks_on()
plt.tight_layout()
plt.show()
开发者ID:sousasag,项目名称:OPEN,代码行数:32,代码来源:classes.py
示例11: _plot
def _plot(self, doFAP=None):
"""
Create a plot.
"""
xlabel = 'Period [d]'
ylabel = 'Power'
self.fig = plt.figure()
self.ax = self.fig.add_subplot(1,1,1)
self.ax.set_title("Normalized periodogram")
self.ax.set_xlabel(xlabel)
self.ax.set_ylabel(ylabel)
self.ax.semilogx(1./self.freq, self.power, 'b-')
# plot FAPs
if doFAP is None:
pass
elif doFAP is True: # do default FAPs of 10%, 1% and 0.1%
pmin = 1./self.freq.min()
pmax = 1./self.freq.max()
plvl1 = self.powerLevel(0.1) # 10% FAP
plvl2 = self.powerLevel(0.01) # 1% FAP
plvl3 = self.powerLevel(0.001) # 0.1% FAP
self.ax.semilogx([pmin, pmax],[plvl1, plvl1],'k-')
self.ax.semilogx([pmin, pmax],[plvl2, plvl2],'k--')
self.ax.semilogx([pmin, pmax],[plvl3, plvl3],'k:')
plt.tight_layout()
plt.show()
开发者ID:sousasag,项目名称:OPEN,代码行数:28,代码来源:classes.py
示例12: do_plot_obs
def do_plot_obs(self):
""" Plot the observed radial velocities as a function of time.
Data from each file are color coded and labeled.
"""
# import pyqtgraph as pg
colors = 'bgrcmykw' # lets hope for less than 9 data-sets
t, rv, err = self.time, self.vrad, self.error # temporaries
plt.figure()
# p = pg.plot()
# plot each files' values
for i, (fname, [n, nout]) in enumerate(sorted(self.provenance.iteritems())):
m = n-nout # how many values are there after restriction
# e = pg.ErrorBarItem(x=t[:m], y=rv[:m], \
# height=err[:m], beam=0.5,\
# pen=pg.mkPen(None))
# pen={'color': 0.8, 'width': 2})
# p.addItem(e)
# p.plot(t[:m], rv[:m], symbol='o')
plt.errorbar(t[:m], rv[:m], yerr=err[:m], \
fmt='o'+colors[i], label=fname)
t, rv, err = t[m:], rv[m:], err[m:]
plt.xlabel('Time [days]')
plt.ylabel('RV [km/s]')
plt.legend()
plt.tight_layout()
plt.show()
开发者ID:sousasag,项目名称:OPEN,代码行数:30,代码来源:classes.py
示例13: save
def save(self, plot_filename, max_col=2):
fig = plt.figure()
fig.suptitle(self.title, fontsize=8)
if len(self.datastore) <= max_col:
colsz = len(self.datastore)
rowsz = 1
for i, d in enumerate(self.datastore):
if len(d) == 0:
continue # empty space
ax = fig.add_subplot(rowsz, colsz, i + 1)
self._plot(i, ax)
else:
sz = len(self.datastore)
colsz = max_col
rowsz = sz / max_col
rowsz = rowsz if sz % max_col == 0 else rowsz + 1
for i, d in enumerate(self.datastore):
if len(d) == 0:
continue # empty space
ax = fig.add_subplot(rowsz, colsz, i + 1)
self._plot(i, ax)
#plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
plt.tight_layout()
plt.savefig(plot_filename)
return self
开发者ID:chrinide,项目名称:ume,代码行数:28,代码来源:visualize.py
示例14: plot_ss_scatter
def plot_ss_scatter(steadies):
""" Plot scatter plots of steady states
"""
def do_scatter(i, j, ax):
""" Draw single scatter plot
"""
xs, ys = utils.extract(i, j, steadies)
ax.scatter(xs, ys)
ax.set_xlabel(r"$S_%d$" % i)
ax.set_ylabel(r"$S_%d$" % j)
cc = utils.get_correlation(xs, ys)
ax.set_title(r"Corr: $%.2f$" % cc)
dim = steadies.shape[1]
fig, axarr = plt.subplots(1, int((dim ** 2 - dim) / 2), figsize=(20, 5))
axc = 0
for i in range(dim):
for j in range(dim):
if i == j:
break
do_scatter(i, j, axarr[axc])
axc += 1
plt.suptitle("Correlation overview")
plt.tight_layout()
save_figure("images/correlation_scatter.pdf", bbox_inches="tight")
plt.close()
开发者ID:kpj,项目名称:SDEMotif,代码行数:32,代码来源:plotter.py
示例15: plot_ra
def plot_ra(s1, s2, idxs=None, epsilon=0.25, fig=None):
"""Computes the RA plot of two groups of samples"""
## compute log2 values
l1 = np.log2(s1 + epsilon)
l2 = np.log2(s2 + epsilon)
## compute A and R
r = l1 - l2
a = (l1 + l2) * 0.5
fig = pl.figure() if fig is None else fig
pl.figure(fig.number)
if idxs is None:
pl.plot(a, r, '.k', markersize=2)
else:
pl.plot(a[~idxs], r[~idxs], '.k', markersize=2)
pl.plot(a[idxs], r[idxs], '.r')
pl.axhline(0, linestyle='--', color='k')
pl.xlabel('(log2 sample1 + log2 sample2) / 2')
pl.ylabel('log2 sample1 - log2 sample2')
pl.tight_layout()
开发者ID:BioinformaticsArchive,项目名称:dgeclust,代码行数:26,代码来源:utils.py
示例16: plotRttDistribution
def plotRttDistribution(rttEstimates, ip, filename, nbBins=500, logscale=False):
"""Plot the RTT distribution of an IP address
:rttEstimates: pandas DataFrame containing the RTT estimations
:ip: IP address to plot
:filename: Filename for the plot
:nbBins: Number of bins in the histogram
:logscale: Plot RTTs in logscale if set to True
:returns: None
"""
if logscale:
data = np.log10(rttEstimates[rttEstimates.index == ip].rtt)
else:
data = rttEstimates[rttEstimates.index == ip].rtt
h, b=np.histogram(data, nbBins, normed=True)
plt.figure(1, figsize=(9, 3))
plt.clf()
ax = plt.subplot()
x = b[:-1]
ax.plot(x, h, "k")
ax.grid(True)
plt.title("%s (%s RTTs)" % (ip, len(data)))
if logscale:
plt.xlabel("log10(RTT)")
else:
plt.xlabel("RTT")
plt.ylabel("pdf")
minorLocator = mpl.ticker.MultipleLocator(10)
ax.xaxis.set_minor_locator(minorLocator)
plt.tight_layout()
plt.savefig(filename)
开发者ID:romain-fontugne,项目名称:RTTanalysis,代码行数:34,代码来源:dpgmm.py
示例17: expt3
def expt3():
"""
Experiment 2: Chooses the result files and generates figures
"""
result_file = "./expt3.txt"
input_threads, input_sizes, throughputs, resp_times \
= parse_output(result_file)
throughputs_MiB = [tp/2**20 for tp in throughputs]
fig1, (ax0, ax1) = pl.subplots(ncols=2, figsize=(6, 3))
fig1.set_tight_layout(True)
ax0.plot(input_threads, throughputs_MiB,
'bo-', ms=MARKER_SIZE, mew=0, mec='b')
ax0.set_xlabel("threads")
ax0.set_ylabel("throughput (MiB/sec)")
ax0.set_xlim(0,25)
ax0.text(1, 85, "(A)")
ax1.plot(input_threads, resp_times,
'mo-', ms=MARKER_SIZE, mew=0, mec='m')
ax1.set_xlabel("threads")
ax1.set_ylabel("response time (sec)")
ax1.set_xlim(0,25)
ax1.set_ylim(0,400)
ax1.text(1, 375, "(B)")
pl.tight_layout()
pl.savefig("./figures/%s" % result_file.replace(".txt", ".pdf"))
开发者ID:rohan-kekatpure,项目名称:courses,代码行数:30,代码来源:analyser.py
示例18: plot_ga_cnn
def plot_ga_cnn(data, save=False, save_dest=None):
plt.figure()
# generation and all time best score plot
# plt.subplot(211)
# plt.title("GA CNN tuner on dataset D2")
# plt.plot(data["dataset1"]["gen_best_score"], label="Generation Best")
# plt.plot(data["dataset1"]["all_time_best_score"], label="All Time best")
# plt.xlabel("Generation")
# plt.ylabel("Score")
# plt.xticks(range(0, 20))
# plt.xlim([0, 9])
# plt.ylim([0, 0.01])
# plt.legend(loc=0)
# plt.subplot(212)
# plt.title("GA CNN tuner on dataset D3")
plt.plot(data["gen_best_score"], label="Generation Best")
plt.plot(data["all_time_best_score"], label="All Time best")
plt.xlabel("Generation")
plt.ylabel("Score")
plt.xticks(range(0, 20))
plt.xlim([0, 9])
plt.ylim([0, 0.01])
plt.legend(loc=0)
# show plot or save as picture
if save is False:
plt.show()
else:
if save_dest is None:
raise RuntimeError("save_dest not set!!")
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
plt.savefig(save_dest, dpi=200)
开发者ID:deerishi,项目名称:genetic-algorithm-for-cnn,代码行数:34,代码来源:plot.py
示例19: plmyfig
def plmyfig(df, bgname, dirname, tar, count=10):
#plot fig!
print("Starting Plot %s %s" % (dirname, bgname))
if len(df) > count:
df = df.head(count)
pos = plt.arange(len(df)) + 0.5
ytick = _getTerm(df['Term_description'], df['Term_ID'], bgname)
xs = [float(n) for n in df[' -log10(pvalue)']]
ytick.reverse()
xs.reverse()
plt.barh(pos, xs, align = 'center', height = 0.5, alpha = 1, color='orange')
plt.yticks(pos, ytick, size = 'x-small')
plt.xlabel('$-Log10(pValue)$')
plt.title('%s' % bgname)
ax = plt.gca()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
try:
plt.tight_layout()
except ValueError:
pass
filename = os.path.join(tar, dirname, dirname + '_' + bgname)
plt.savefig(filename + '.png', dpi = 72)
plt.savefig(filename + '.pdf')
plt.close()
开发者ID:Kennyluo4,项目名称:mybio,代码行数:27,代码来源:plot.py
示例20: test
def test(args):
data = multivariate_normal([0, 0], [[1, 2], [2, 5]], int(args[1]))
print(data)
# PCA
result = pca(data, base_num=int(args[2]))
pc_base = result[0]
print(pc_base)
# Plotting
fig = plt.figure()
fig.add_subplot(1, 1, 1)
plt.axvline(x=0, color="#000000")
plt.axhline(y=0, color="#000000")
# Plot data
plt.scatter(data[:, 0], data[:, 1])
# Draw the 1st principal axis
pc_line = sp.array([-3.0, 3.0]) * (pc_base[1] / pc_base[0])
plt.arrow(0, 0, -pc_base[0] * 2, -pc_base[1] * 2, fc="r", width=0.15, head_width=0.45)
plt.plot([-3, 3], pc_line, "r")
# Settings
plt.xticks(size=15)
plt.yticks(size=15)
plt.xlim([-3, 3])
plt.tight_layout()
plt.show()
plt.savefig("image.png")
return 0
开发者ID:id774,项目名称:sandbox,代码行数:28,代码来源:pca.py
注:本文中的matplotlib.pylab.tight_layout函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论