• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

机器学习入门教程-k-近邻 - go2coding

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

机器学习入门教程-k-近邻

k-近邻算法原理

像之前提到的那样,机器学习的一个要点就是分类,对于分类来说有许多不同的算法,所谓的物以聚类,分以群分。我们非常的清楚,一个地域的人群,不管在生活习惯,还是在习俗上都是非常相似的,也就是我们说的一类人。每一类人都会形成自己的一个中心,越靠近这个中心的人越为相似。k近邻算法就是为了找到这个中心点,把这中心点当成这类关键点,在有新的数据需要分类的话,就看离哪个中心点近,那么就属于哪一类。

假设我们有这样的一组数据,他代表一个人的地理坐标位置:

x坐标 y坐标 哪省人
4.035615117 4.920529835 0
4.665299994 4.702897321 0
1.711128297 1.031989236 1

根据这坐标在图上绘出图形:

两个蓝色的点互相靠近,它们的属性应该是相似的,而红色的点,离这两个蓝色的点有一定的距离,可能属于另一个聚合。

在这里导入一组数据,这一组数据中有三个分类,每一个分类就是一个群,组成了三个中心,具体的数据和图如下:

import numpy as np
import random
import matplotlib.pyplot as plt

def read_clusters(clustersfile):
    cl = []
    tl = []
    with open(clustersfile, \'r\') as f:
        for line in f:
            line = line.strip()
            if line != \'\':
                line = line.split()
                constraint = [float(line[0]), float(line[1])]

                cl.append(constraint)
                tl.append(int(line[2]))
    return cl,tl

train_data,train_labels = read_clusters(\'clusters3.txt\')
train_data = np.array(train_data)
key_name = {0:\'red\',1:\'blue\',2:\'orange\'}

for i in range(train_data.shape[0]):
    plt.scatter(train_data[i:i + 1, 0:1], train_data[i:i + 1, 1:2], c=key_name[train_labels[i]], marker=\'o\',s=20)

plt.savefig(\'clusters.png\')

k-近邻算法步骤

k-近邻的一般步骤如下:

1.先随机的产生几个中心,中心点的确认来自于需要组建几个类群。

def _init_random_centroids(self, data):
    n_samples, n_features = np.shape(data)
    centroids = np.zeros((self.k, n_features))
    for i in range(self.k):
        centroid = data[np.random.choice(range(n_samples))]
        centroids[i] = centroid
    return centroids

2.接下来是把所有的数据点跟这几个中心点进行比较,数据点里哪个中心点近,那么这个点就属于哪个类群。

计算距离的公式如下:

def euclidean_distance(vec_1, vec_2):
	if(len(vec_1) != len(vec_2)):
		raise Exception("The two vectors do NOT have equal length")

	distance = 0
	for i in range(len(vec_1)):
		distance += pow((vec_1[i] - vec_2[i]), 2)

	return np.sqrt(distance)

根据距离查找属于哪个中心点。

def _closest_centroid(self, sample, centroids):
    closest_i = None
    closest_distance = float("inf")
    for i, centroid in enumerate(centroids):
        distance = ml_helpers.euclidean_distance(sample, centroid)
        if distance < closest_distance:
            closest_i = i
            closest_distance = distance
    return closest_i

3.通过中心点确定了类群,在通过类群更新中心点。中心点是这个类群所有点的均值点,计算均值更新中心点。

def _calculate_centroids(self, clusters, data):
    n_features = np.shape(data)[1]
    centroids = np.zeros((self.k, n_features))
    for i, cluster in enumerate(clusters):
        centroid = np.mean(data[cluster], axis=0)
        centroids[i] = centroid
    return centroids

4.不断的更新这一个过程,直到中心点不在变化。

整个过程如下:

import numpy as np
import random
import sys

import matplotlib.pyplot as plt

def euclidean_distance(vec_1, vec_2):
	if(len(vec_1) != len(vec_2)):
		raise Exception("The two vectors do NOT have equal length")

	distance = 0
	for i in range(len(vec_1)):
		distance += pow((vec_1[i] - vec_2[i]), 2)

	return np.sqrt(distance)
	
def read_clusters(clustersfile):
    cl = []
    tl = []
    with open(clustersfile, \'r\') as f:
        for line in f:
            line = line.strip()
            if line != \'\':
                line = line.split()
                constraint = [float(line[0]), float(line[1])]

                cl.append(constraint)
                tl.append(int(line[2]))
    return cl,tl


class KMeans():
    def __init__(self, k=2, max_iterations=500):
        self.k = k
        self.max_iterations = max_iterations
        self.kmeans_centroids = []

    def _init_random_centroids(self, data):
        n_samples, n_features = np.shape(data)
        centroids = np.zeros((self.k, n_features))
        for i in range(self.k):
            centroid = data[np.random.choice(range(n_samples))]
            centroids[i] = centroid
        return centroids

    def _closest_centroid(self, sample, centroids):
        closest_i = None
        closest_distance = float("inf")
        for i, centroid in enumerate(centroids):
            distance = euclidean_distance(sample, centroid)
            if distance < closest_distance:
                closest_i = i
                closest_distance = distance
        return closest_i

    def _create_clusters(self, centroids, data):
        n_samples = np.shape(data)[0]
        clusters = [[] for _ in range(self.k)]
        for sample_i, sample in enumerate(data):		
            centroid_i = self._closest_centroid(sample, centroids)
            clusters[centroid_i].append(sample_i)
        return clusters

    def _calculate_centroids(self, clusters, data):
        n_features = np.shape(data)[1]
        centroids = np.zeros((self.k, n_features))
        for i, cluster in enumerate(clusters):
            centroid = np.mean(data[cluster], axis=0)
            centroids[i] = centroid
        return centroids

    def _get_cluster_labels(self, clusters, data):
        y_pred = np.zeros(np.shape(data)[0])
        for cluster_i, cluster in enumerate(clusters):
            for sample_i in cluster:
                y_pred[sample_i] = cluster_i
        return y_pred

    def fit(self, data):
        centroids = self._init_random_centroids(data)

        for iteration in range(self.max_iterations):


            clusters = self._create_clusters(centroids, data)

            prev_centroids = centroids

            centroids = self._calculate_centroids(clusters, data)

            diff = centroids - prev_centroids
            if not diff.any():
                break

        self.kmeans_centroids = centroids
        return centroids

    def predict(self, data):


        if not self.kmeans_centroids.any():
            raise Exception("K-Means centroids have not yet been determined.\nRun the K-Means \'fit\' function first.")

        clusters = self._create_clusters(self.kmeans_centroids, data)

        predicted_labels = self._get_cluster_labels(clusters, data)

        return predicted_labels



key_name = {0:\'red\',1:\'blue\',2:\'orange\'}




clf = KMeans(k=3, max_iterations=3000)

train_data,train_labels = read_clusters(\'clusters3.txt\')
train_data = np.array(train_data)
centroids = clf.fit(train_data)
print centroids

中心点不断更新的过程如下:

算法误差估计

检验算法的好坏,简单的办法是把一部分的数据用来训练,一部分的数据用来检验,查看算法的结果跟预计的数据相差多少?

下面是算法的效果估计:

Accuracy = 0
for index in range(len(train_labels)):
	# Cluster the data using K-Means
	current_label = train_labels[index]
	predicted_label = predicted_labels[index]

	if current_label == int(predicted_label):
		Accuracy += 1

Accuracy /= len(train_labels)

print Accuracy

输出的结果为

1

准确率达到100%。

sklearn 下的k-近邻算法

在学习算法的时候知道了原理,通过自己的代码对算法的原理进行编写,通常来讲这很方便学习,在知道了如何编写算法以后,可以直接使用现成的开源库,直接使用该算法,sklearn 就非常方便使用。

clf = cluster.KMeans(n_clusters=3, max_iter=3000, n_init=10)
kmeans = clf.fit(train_data)

Accuracy = 0
for index in range(len(train_labels)):
	# Cluster the data using K-Means
	current_sample = train_data[index].reshape(1,-1) 
	current_label = train_labels[index]
	predicted_label = kmeans.predict(current_sample)
	if current_label == predicted_label:
		Accuracy += 1

Accuracy /= len(train_labels)

算法的应用

k-近邻算法用来找到中心点,同时算法也可以用来进行去重,把重复的附近的点都把他近似为中心点。

转载请标明来之:http://www.bugingcode.com/

更多教程:阿猫学编程


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Go的Pipe应用场景,往服务器提交multipart请求发布时间:2022-07-10
下一篇:
机器学习入门 - go2coding发布时间:2022-07-10
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap