在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
当一个方法被调用时,调用者需要等待该方法执行完毕并返回才能继续执行,我们称这个方法是同步方法;当一个方法被调用时立即返回,并获取一个线程执行该方法内部的业务,调用者不用等待该方法执行完毕,我们称这个方法为异步方法。 异步的好处在于非阻塞(调用线程不会暂停执行去等待子线程完成),因此我们把一些不需要立即使用结果、较耗时的任务设为异步执行,可以提高程序的运行效率。net4.0在ThreadPool的基础上推出了Task类,微软极力推荐使用Task来执行异步任务,现在C#类库中的 异步方法基本都用到了Task;NET5.0推出了async/await,让异步编程更为方便。本篇主要介绍Task、async/await相关的内容 二、Task介绍Task是在ThreadPool的基础上推出的。ThreadPool中有若干数量的线程,如果有任务需要处理时,会从线程池中获取一个空闲的线程来执行任务,任务执行完毕后线程不会销毁,而是被线程池回收以供后续任务使用。当线程池中所有的线程都在忙碌时,又有新任务要处理时,线程池才会新建一个线程来处理该任务,如果线程数量达到设置的最大值,任务会排队,等待其他任务释放线程后再执行。 using System; using System.Threading; namespace ThreadPoolDemo { class Program { static void Main(string[] args) { for (int i = 1; i <= 10; i++) { ThreadPool.QueueUserWorkItem(new WaitCallback((obj) => { Console.WriteLine($"第{obj}个执行任务"); }),i); } Console.ReadKey(); } } } 执行结果: ThreadPool相对于Thread来说可以减少线程的创建,有效减小系统开销;但是ThreadPool不能控制线程的执行顺序,我们也不能获取线程池内线程取消/异常/完成的通知,即我们不能有效监控和控制线程池中的线程。
1、Task创建和运行我们知道了ThreadPool的弊端:我们不能控制线程池中线程的执行顺序,也不能获取线程池内线程取消/异常/完成的通知。net4.0在ThreadPool的基础上推出了Task,Task拥有线程池的优点,同时也解决了使用线程池不易控制的弊端。首先看一下怎么去创建并运行一个Task,Task的创建和执行方式有如下三种: using System; using System.Threading; using System.Threading.Tasks; namespace TaskDemo { class Program { static void Main(string[] args) { #region 方式一:NEW实例化一个Task,通过Start方法启动 Task task = new Task(() => { Thread.Sleep(100); Console.WriteLine($"NEW实例化一个task,线程ID为{Thread.CurrentThread.ManagedThreadId}"); }); task.Start(); #endregion #region 方式二:Task.Factory.StartNew(Action action)创建和启动一个Task Task task2 = Task.Factory.StartNew(() => { Thread.Sleep(100); Console.WriteLine($"Task.Factory.StartNew方式创建一个task,线程ID为{ Thread.CurrentThread.ManagedThreadId}"); }); #endregion #region 方式三:Task.Run(Action action)将任务放在线程池队列,返回并启动一个Task Task task3 = Task.Run(() => { Thread.Sleep(100); Console.WriteLine($"Task.Run方式创建一个task,线程ID为{ Thread.CurrentThread.ManagedThreadId}"); }); #endregion Console.WriteLine("执行主线程!"); Console.ReadKey(); } } } 执行结果如下:
我们看到先打印"执行主线程",然后再打印各个任务,说明了Task不会阻塞主线程。上边的例子Task都没有返回值,我们也可以创建有返回值的task,用法和没有返回值的基本一致 using System; using System.Threading; using System.Threading.Tasks; namespace TaskParamDemo { class Program { static void Main(string[] args) { #region 方式一:NEW实例化一个Task,通过Start方法启动 Task<string> task = new Task<string>(() => { return $"NEW实例化一个task,线程ID为{Thread.CurrentThread.ManagedThreadId}"; }); task.Start(); #endregion #region 方式二:Task.Factory.StartNew(Action action)创建和启动一个Task Task<string> task2 = Task.Factory.StartNew<string>(() => { return $"Task.Factory.StartNew方式创建一个task,线程ID为{ Thread.CurrentThread.ManagedThreadId}"; }); #endregion #region 方式三:Task.Run(Action action)将任务放在线程池队列,返回并启动一个Task Task<string> task3 = Task.Run<string>(() => { return $"Task.Run方式创建一个task,线程ID为{ Thread.CurrentThread.ManagedThreadId}"; }); #endregion Console.WriteLine("执行主线程!"); Console.WriteLine(task.Result); Console.WriteLine(task2.Result); Console.WriteLine(task3.Result); Console.ReadKey(); } } } 注意task.Resut获取结果时会阻塞线程,即如果task没有执行完成,会等待task执行完成获取到Result,然后再执行后边的代码,程序运行结果如下:
上边的所有例子中Task的执行都是异步的,不会阻塞主线程。有些场景下我们想让Task同步执行怎么办呢?Task提供了 task.RunSynchronously()用于同步执行Task任务,代码如下: using System; using System.Threading; using System.Threading.Tasks; namespace TaskDemo1 { class Program { static void Main(string[] args) { Task task = new Task(() => { Thread.Sleep(100); Console.WriteLine("执行Task结束!"); }); //同步执行,task会阻塞主线程 task.RunSynchronously(); Console.WriteLine("执行主线程结束!"); Console.ReadKey(); } } } 执行结果如下:
2 Task的阻塞方法(Wait/WaitAll/WaitAny)(1)Thread阻塞线程的方法使用Thread时,我们知道用thread.Join()方法即可阻塞主线程。看一个例子: using System; using System.Threading; namespace TaskDemo1 { class Program { static void Main(string[] args) { Thread th1 = new Thread(() => { Thread.Sleep(500); Console.WriteLine("线程1执行完毕!"); }); th1.Start(); Thread th2 = new Thread(() => { Thread.Sleep(1000); Console.WriteLine("线程2执行完毕!"); }); th2.Start(); //阻塞主线程 th1.Join(); th2.Join(); Console.WriteLine("主线程执行完毕!"); Console.ReadKey(); } } } 执行结果:
Thread的Join方法可以阻塞调用线程,但是有一些弊端: ①如果我们要实现很多线程的阻塞时,每个线程都要调用一次Join方法; ②如果我们想让所有的线程执行完毕(或者任一线程执行完毕)时,立即解除阻塞,使用Join方法不容易实现。
(2)Task提供了 Wait/WaitAny/WaitAll 方法,可以更方便地控制线程阻塞。 task.Wait() 表示等待task执行完毕,功能类似于thead.Join(); Task.WaitAll(Task[] tasks) 表示只有所有的task都执行完成了再解除阻塞; Task.WaitAny(Task[] tasks)表示只要有一个task执行完毕就解除阻塞,看一个例子: using System; using System.Threading; using System.Threading.Tasks; namespace TaskDemo1 { class Program { static void Main(string[] args) { Task task1 = new Task(() => { Thread.Sleep(500); Console.WriteLine("线程1执行完毕!"); }); task1.Start(); Task task2 = new Task(() => { Thread.Sleep(1000); Console.WriteLine("线程2执行完毕!"); }); task2.Start(); //阻塞主线程。task1,task2都执行完毕再执行主线程 //执行【task1.Wait();task2.Wait();】可以实现相同功能 Task.WaitAll(new Task[] { task1, task2 }); Console.WriteLine("主线程执行完毕!"); Console.ReadKey(); } } } 执行结果:
3 Task的延续操作(WhenAny/WhenAll/ContinueWith)上边的Wait/WaitAny/WaitAll方法返回值为void,这些方法单纯的实现阻塞线程。我们现在想让所有task执行完毕(或者任一task执行完毕)后,开始执行后续操作,怎么实现呢?这时就可以用到WhenAny/WhenAll方法了,这些方法执行完成返回一个task实例。 task.WhenAll(Task[] tasks) 表示所有的task都执行完毕后再去执行后续的操作 task.WhenAny(Task[] tasks) 表示任一task执行完毕后就开始执行后续操作。看一个例子: using System; using System.Threading; using System.Threading.Tasks; namespace TaskDemo1 { class Program { static void Main(string[] args) { Task task1 = new Task(() => { Thread.Sleep(500); Console.WriteLine("线程1执行完毕!"); }); task1.Start(); Task task2 = new Task(() => { Thread.Sleep(1000); Console.WriteLine("线程2执行完毕!"); }); task2.Start(); //task1,task2执行完了后执行后续操作 Task.WhenAll(task1, task2).ContinueWith((t) => { Thread.Sleep(100); Console.WriteLine("执行后续操作完毕!"); }); Console.WriteLine("主线程执行完毕!"); Console.ReadKey(); } } } 执行结果如下,我们看到WhenAll/WhenAny方法不会阻塞主线程,当使用WhenAll方法时所有的task都执行完毕才会执行后续操作;如果把栗子中的WhenAll替换成WhenAny,则只要有一个线程执行完毕就会开始执行后续操作,这里不再演示。
上边的例子也可以通过 using System; using System.Threading; using System.Threading.Tasks; namespace TaskDemo1 { class Program { static void Main(string[] args) { Task task1 = new Task(() => { Thread.Sleep(500); Console.WriteLine("线程1执行完毕!"); }); task1.Start(); Task task2 = new Task(() => { Thread.Sleep(1000); Console.WriteLine("线程2执行完毕!"); }); task2.Start(); //通过TaskFactroy实现 Task.Factory.ContinueWhenAll(new Task[] { task1, task2 }, (t) => { Thread.Sleep(100); Console.WriteLine("执行后续操作"); }); Console.WriteLine("主线程执行完毕!"); Console.ReadKey(); } } } 执行结果如下:
4 Task的任务取消(CancellationTokenSource)(1)Thread取消任务执行 在Task前我们执行任务采用的是Thread,Thread怎么取消任务呢?一般流程是:设置一个变量来控制任务是否停止,如设置一个变量isStop,然后线程轮询查看isStop,如果isStop为true就停止,代码如下: using System; using System.Threading; using System.Threading.Tasks; namespace TaskDemo1 { class Program { static void Main(string[] args) { bool isStop = false; int index = 0; //开启一个线程执行任务 Thread th1 = new Thread(() => { while (!isStop) { Thread.Sleep(1000); Console.WriteLine($"第{++index}次执行,线程运行中..."); } }); th1.Start(); //五秒后取消任务执行 Thread.Sleep(5000); isStop = true; Console.ReadKey(); } } } 执行结果:
(2) Task取消任务执行 Task中有一个专门的类 CancellationTokenSource 来取消任务执行,还是使用上边的例子,我们修改代码如下,程序运行的效果不变。 using System; using System.Threading; using System.Threading.Tasks; namespace TaskDemo1 { class Program { static void Main(string[] args) { CancellationTokenSource source = new CancellationTokenSource(); int index = 0; //开启一个task执行任务 Task task1 = new Task(() => { while (!source.IsCancellationRequested) { Thread.Sleep(1000); Console.WriteLine($"第{++index}次执行,线程运行中..."); } }); task1.Start(); //五秒后取消任务执行 Thread.Sleep(5000); //source.Cancel()方法请求取消任务,IsCancellationRequested会变成true source.Cancel(); Console.ReadKey(); } } } 执行结果:
CancellationTokenSource的功能不仅仅是取消任务执行,我们可以使用 using System; using System.Threading; using System.Threading.Tasks; namespace TaskDemo1 { class Program { static void Main(string[] args) { CancellationTokenSource source = new CancellationTokenSource(); //注册任务取消的事件 source.Token.Register(() => { Console.WriteLine("任务被取消后执行xx操作!"); }); int index = 0; //开启一个task执行任务 Task task1 = new Task(() => { while (!source.IsCancellationRequested) { Thread.Sleep(1000); Console.WriteLine($"第{++index}次执行,线程运行中..."); } }); task1.Start(); //延时取消,效果等同于Thread.Sleep(5000);source.Cancel(); source.CancelAfter(5000); Console.ReadKey(); } } } 执行结果如下,第5次执行在取消回调后打印,这是因为,执行取消的时候第5次任务已经通过了while()判断,任务已经执行中了:
最后看跨线程的例子,点击按钮启动一个任务,给tetxtbox赋值,我们把Thread改成Task,代码如下: public partial class Form1 : Form { public Form1() { InitializeComponent(); } private void mySetValueBtn_Click(object sender, EventArgs e) { Task.Run(() => { Action<int> setValue = (i) => { myTxtbox.Text = i.ToString(); }; for (int i = 0; i < 1000000; i++) { myTxtbox.Invoke(setValue,i); } }); } } 运行界面如下,赋值的task不会阻塞UI线程: 三、异步方法(async/await)在C#5.0中出现的async和await ,让异步编程变得更简单。我们看一个获取文件内容的例子: using System; using System.IO; using System.Text; using System.Threading.Tasks; namespace AsyncDemo { class Program { static void Main(string[] args) { string content = GetContentAsync(Environment.CurrentDirectory + @"/test.txt").Result; //调用同步方法 //string content = GetContent(Environment.CurrentDirectory + @"/test.txt"); Console.WriteLine(content); Console.ReadKey(); } //异步读取文件内容 async static Task<string> GetContentAsync(string filename) { FileStream fs = new FileStream(filename, FileMode.Open); var bytes = new byte[fs.Length]; //ReadAync方法异步读取内容,不阻塞线程 Console.WriteLine("开始读取文件"); int len = await fs.ReadAsync(bytes, 0, bytes.Length); string result = Encoding.UTF8.GetString(bytes); return result; } //同步读取文件内容 static string GetContent(string filename) { FileStream fs = new FileStream(filename, FileMode.Open); var bytes = new byte[fs.Length]; //Read方法同步读取内容,阻塞线程 int len = fs.Read(bytes, 0, bytes.Length); string result = Encoding.UTF8.GetString(bytes); return result; } } } 执行结果为: 上边的例子也写出了同步读取的方式,将main函数中的注释去掉即可同步读取文件内容。我们可以看到异步读取代码和同步读取代码基本一致。async/await让异步编码变得更简单,我们可以像写同步代码一样去写异步代码。注意一个小问题:异步方法中方法签名返回值为Task,代码中的返回值为T。上边例子中GetContentAsync的签名返回值为Task,而代码中返回值为string。牢记这一细节对我们分析异步代码很有帮助。 异步方法签名的返回值有以下三种: ① Task<T>:如果调用方法想通过调用异步方法获取一个T类型的返回值,那么签名必须为Task<T>; using System; using System.IO; using System.Text; using System.Threading.Tasks; namespace AsyncDemo { class Program { static void Main(string[] args) { Console.WriteLine($"主程序执行开始:{DateTime.Now}"); string content = GetContentAsync(Environment.CurrentDirectory + @"/test.txt").Result; Console.WriteLine($"主程序输出的结果:{content}"); Console.WriteLine($"主程序执行结束:{DateTime.Now}"); Console.ReadKey(); } //异步读取文件内容 async static Task<string> GetContentAsync(string filename) { FileStream fs = new FileStream(filename, FileMode.Open); var bytes = new byte[fs.Length]; //ReadAync方法异步读取内容,不阻塞线程 Console.WriteLine($"开始读取文件{DateTime.Now}"); int len = await fs.ReadAsync(bytes, 0, bytes.Length); Console.WriteLine($"完成文件读取:{DateTime.Now}"); string result = Encoding.UTF8.GetString(bytes); return result; } } } 执行结果:
从上述可以看出,主程序调用异步方法GetContentAsync后,主程序并没有继续往下执行,而是等待GetContentAsync执行完,返回结果后才继续执行。如果调用方法要从调用中获取一个T类型的值,异步方法的返回类型就必须是Task<T>,而且调用者会等待结果返回才会继续往下执行。 ② Task:如果调用方法不想通过异步方法获取一个值,仅仅想追踪异步方法的执行状态,那么我们可以设置异步方法签名的返回值为Task;
③ void:如果调用方法仅仅只是调用一下异步方法,不和异步方法做其他交互,我们可以设置异步方法签名的返回值为void,这种形式也叫做“调用并忘记”。 using System; using System.IO; using System.Text; using System.Threading.Tasks; namespace AsyncDemo { class Program { static void Main(string[] args) { Console.WriteLine($"主程序执行开始:{DateTime.Now}"); GetContentAsync(Environment.CurrentDirectory + @"/test.txt"); Console.WriteLine($"主程序执行结束:{DateTime.Now}"); Console.ReadKey(); } //异步读取文件内容 async static void GetContentAsync(string filename) { FileStream fs = new FileStream(filename, FileMode.Open); var bytes = new byte[fs.Length]; //ReadAync方法异步读取内容,不阻塞线程 Console.WriteLine($"开始读取文件{DateTime.Now}"); int len = await fs.ReadAsync(bytes, 0, bytes.Length); Console.WriteLine($"完成文件读取:{DateTime.Now}"); } } }
从上述看出,主程序调用异步方法GetContentAsync后,主程序继续往下执行。如果调用方法仅仅只是调用一下异步方法,不和异步方法做其他交互,我们可以设置异步方法签名的返回值为void,而且调用者不会等待,而是继续执行。
四、小结通过上边的介绍,我们知道async/await是基于Task的,而Task是对ThreadPool的封装改进,主要是为了更有效的控制线程池中的线程(ThreadPool中的线程,我们很难通过代码控制其执行顺序,任务延续和取消等等);ThreadPool基于Thread的,主要目的是减少Thread创建数量和管理Thread的成本。async/await Task是C#中更先进的,也是微软大力推广的特性,我们在开发中可以尝试使用Task来替代Thread/ThreadPool,处理本地IO和网络IO任务是尽量使用async/await来提高任务执行效率。 参考:https://blog.csdn.net/btfireknight/article/details/97766193 |
请发表评论