每一款游戏,或大或小,都是由一段段默默无闻的算法在支撑着他们的运作,我们不能只欣赏绚丽的游戏成品表现在我们面前的华丽与光鲜,还要看到那些支撑在华丽与光鲜背后的,鲜为人知的算法。
我们知道,在游戏领域里,围绕随机性与随机数展开的一系列技术有着非常广阔的运用空间。
比如所有游戏都离不开的宝物掉落系统。极品装备的掉落永远牵动着玩家们的心,譬如盛大《热血传奇》盛行的年代一把霸气的“屠龙刀”,比如《魔兽世界》70级版本里一把帅气的“伊利丹的双刀”,又如《地下城与勇士》60级版本时一把拉风的“流光星陨刀”。
比如几乎同样是所有游戏都离不开的装备强化系统。闪闪发光的高强化武器永远是每一个玩家的梦寐以求,但在这高强化武器光鲜的背后,有那么多的玩家因为不高的强化成功率而黯然神伤甚至倾家荡产。不高的强化成功率往往是玩家“烧钱”的罪魁祸首,同样这恰恰就是游戏运营商盈利的主要来源之一(商城的强化防爆保护药)。
比如《地下城与勇士》,《龙之谷》等网游中的通关后翻牌(翻箱子)奖励机制,又比如梦幻西游中变异宝宝的出现等等,以上这些网络游戏中最吸引人的地方,表面上是明丽的图画与彩色的提示语,其实游戏程序要实现这一个个可玩性十足的游戏系统,全都离不开随机数的产生。
我们来假设一个场景,你很喜欢玩DNF,今天你去凯莉那里强化,心爱的武器【死亡舞步】直接一路上了15。看着散发出璀璨光芒的【+15死亡舞步】,你肯定会想,哇,今天人品真好~其实这样的人品好,只不过是计算机的随机数算法得出了一个个合适的随机数数值,能满足强化成功条件设定的临界值罢了。又假设你刚刚单刷深渊爆出了一把【光炎剑-烈日裁决】,其实也是一样的道理,如果深渊BOSS掉落【光炎剑-烈日裁决】的概率是五千分之一,需要的数值是386到390之间,也只不过是在你杀死BOSS的瞬间,计算机的随机数算法算出了一个刚好在386到390之间的随机数值,刚好满足掉落这件PK神器的条件罢了。
引言说了这么多了,无非就是想强调随机数的产生在游戏开发中的重要性,下面就进入正题吧,讲解计算机中随机数的产生方式。
篇章二 知识讲解
在开始展开讲之前,我们必须牢记一个概念,计算机中一般不能产生绝对随机的随机数。计算机产生随机数的过程,是根据一个数(我们可以称它为种子)为基准以某个递推公式推算出来的一系列数,当这系列数很大的时候,就符合正态公布,从而相当于产生了随机数,但这不是真正的随机数,当计算机正常开机后,这个种子的值是确定的,除非你对系统进行了更改。
即计算机一般情况下只能生成相对的随机数,即伪随机数。
当然,也不是说计算机没有能力产生绝对随机的真随机数。前段时间看到过一篇用计算机产生“真随机数”的论文,这里先不作考虑,感兴趣的朋友可以去看看相关的文章。
伪随机数并不是假随机数,这里的“伪”是有规律的意思,就是计算机产生的伪随机数既是随机的又是有规律的。怎样理解呢?产生的伪随机数有时遵守一定的规律,有时不遵守任何规律;伪随机数有一部分遵守一定的规律;另一部分不遵守任何规律。比如“世上没有两片形状完全相同的树叶”,这正是点到了事物的特性,即随机性,但是每种树的叶子都有近似的形状,这正是事物的共性,即规律性。
在很多时候,我们会使用rand()函数与srand()配合来达到产生随机数的效果,srand初始化随机种子,rand产生随机数,下面进行展开的分析(当然我们在这里先不考虑某些游戏引擎会另外设计自己的随机数产生机制。):
▲rand()的内部实现是用的线性同余法,它不是真的随机数,因其周期特别长,故在一定的范围里可看成是随机的。
▲这种伪随机数是由小M多项式序列生成的,其中产生每个小序列都有一个初始值,即随机种子。(注意: 小M多项式序列的周期是65535,即每次利用一个随机种子生成的随机数的周期是65535,当你取得65535个随机数后它们又重复出现了。)
▲目前,计算机中用来产生随机数的算法基本上都是“线性同余”法。rand()返回一随机数值的范围在0至RAND_MAX 间。RAND_MAX的范围最少是在32767之间(int)。
▲用unsigned int 双字节是65535,四字节是4294967295的整数范围。0~RAND_MAX每个数字被选中的机率是相同的。
▲用户未设定随机数种子时,系统默认的随机数种子为1。
▲rand( )产生的是伪随机数字,每次执行时是相同的;若要不同,用函数srand()初始化它。
用 法: void srand(unsigned int seed);
rand( )和srand( )要一起使用,其中srand( )用来初始化随机数种子,rand( )用来产生随机数。
因为默认情况下随机数种子为1,而相同的随机数种子产生的随机数是一样的,失去了随机性的意义,所以为使每次得到的随机数不一样,用函数srand()初始化随机数种子。srand()的参数,用time函数值(即当前时间),因为两次调用rand()函数的时间通常是不同的,这样就可以保证随机性了。
计算机的随机数都是由伪随机数,即是由小M多项式序列生成的,其中产生每个小序列都有一个初始值,即随机种子。(注意: 小M多项式序列的周期是65535,即每次利用一个随机种子生成的随机数的周期是65535,当你取得65535个随机数后它们又重复出现了。)
我们知道rand()函数可以用来产生随机数,这里我再啰嗦一遍。计算机中一般不能产生绝对随机的随机数。计算机产生随机数的过程,是根据一个数(我们可以称它为种子)为基准以某个递推公式推算出来的一系列数,当这系列数很大的时候,就符合正态公布,从而相当于产生了随机数,但这不是真正的随机数,当计算机正常开机后,这个种子的值是确定的,除非你对系统进行了更改。
41 18467 6334 26500 19169 15724 11478 29358 26962 24464
41 18467 6334 26500 19169 15724 11478 29358 26962 24464
为得到不同的随机数序列,则需改变这个种子的值。方法:在开始产生随机数前,调用一次srand(time(NULL))(注意:srand()一定要放在循环外面或者是循环调用的外面,否则的话得到的是相同的随机数)。
1294 18562 14141 18165 11910 29784 11070 13225 131 24405
1774 25714 18734 16528 20825 17189 9848 8899 2503 5375
一般地,我们可用j=1+(int)(n*rand()/(RAND_MAX+1.0))来生成一个0到n之间的随机数。
若用int x = rand() % 101;来生成 0 到 100 之间的随机数这种方法是不可取的,比较好的做法是:
j=(int)(100.0*rand()/(RAND_MAX+1.0))
当然,如果是在gcc,vc之外的编译器,我们也可以使用random(100)。下面的例子都是用了random(n)(VC无法识别random这个函数,VC下我们还是采用 j=(int)(100.0*rand()/(RAND_MAX+1.0)).
2、筛选型随机数 如希望取0-99的随机数,但不能是6。
又如希望取0-99的随机数,但不要5的倍数 解决方法:
如从40--50的范围内取随机数。 解决方法: x=random(11)+40
4、从一组乱数中取随机数。 如:从 67, 87, 34, 78, 12, 5, 9, 108, 999, 378十个数中随机取数。 解决方法:可以用数组将些十个数存贮,然后把0--9中取出的随机数作为序号,实现随机取数。
a = new Array(67, 87, 34, 78, 12, 5, 9, 108, 999, 378);
本节笔记基本上就讲解完了。
每一款游戏,或大或小,都是由一段段默默无闻的算法在支撑着他们的运作,我们不能只欣赏绚丽的游戏成品表现在我们面前的华丽与光鲜,还要看到那些支撑在华丽与光鲜背后的,鲜为人知的算法。
接下来的这几节浅墨准备讲解游戏相关的算法研究,注重算法的思想,配起漂亮的图来不是那么方便,看过我之前笔记的喜欢图文并茂的朋友们请体谅一下浅墨。
关于这节笔记的实例(本来浅墨想写一个C++版武器强化的demo的或者一个DNF通关后翻牌装备奖励的demo的,但是最近事情实在是太多了- -,等过一段时间闲下来了浅墨就开始写,写完了依然是贴出来供大家下载学习),所以这节笔记的实例就是上面的4个cpp源文件,非常轻量级,为了方便大家研究,我依旧将他们打包起来。
感谢一直支持【Visual C++】游戏开发笔记系列专栏的朋友们,也请大家继续关注我的专栏,我一有时间就会把自己的学习心得,觉得比较好的知识点写出来和大家一起分享。
精通游戏开发的路还很长很长,非常希望能和大家一起交流,共同学习,共同进步。
大家看过后觉得值得一看的话,可以顶一下这篇文章,你们的支持是我继续写下去的动力~
如果文章中有什么疏漏的地方,也请大家指正。也希望大家可以多留言来和我探讨编程相关的问题。
请发表评论