• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

拓端tecdat|R语言使用HAR-RV预测实际波动率Realized Volatility案例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

原文链接:http://tecdat.cn/?p=3832


 

在建议用于预测已实现波动率的模型中,Corsi的HAR-RV在性能和简便性方面均脱颖而出。
“ HAR-RV”代表已实现波动性的异质自回归模型,并且基于所谓的“异质市场假说”。这表明,金融市场是人们以不同的频率行事的相互作用(例如,以高频率运行的公司,日内交易的交易商和低频率的机构投资者)。每一类市场都会以不同的频率引起波动,这将在一定程度上影响彼此。从这些考虑出发,想到了独立但联合地对每个波动频率建模的想法。这使我们得出以下结构非常简单的模型:

RV_d + 1 = b_0 + b_1 * RV_d + b_2 * RV_w + b_3 * RV_m

其中RV_d + 1是第二天的RV,RV_d是前一天的RV,RV_w是前一周的平均日RV,RV_m是前一个月的平均RV。在这种情况下,RV是给定频率下日内收益平方和的平方根。
b_0,b_1,b_2和b_3是要找到的回归参数。

如您所见,该模型基本上是一个简单的回归模型,但是它在性能方面与更复杂的模型(例如ARFIMA)进行了比较。实际上,HAR-RV能够对有关RV的主要程式化事实进行建模,例如自相关和长记忆效应(尽管该模型本身不是长记忆模型,它利用了AR(1)的简单总和的发现这一优势。进程可能显示为长存储进程)。

这是预测的已实现波动率的图:

这是实际RV的残差:

 

 

 

参考文献

1.HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率

2.R语言中基于混合数据抽样(MIDAS)回归的HAR-RV模型预测GDP增长

3.波动率的实现:ARCH模型与HAR-RV模型

4.R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测

5.GARCH(1,1),MA以及历史模拟法的VaR比较

6.R语言多元COPULA GARCH 模型时间序列预测

7.R语言基于ARMA-GARCH过程的VAR拟合和预测

8.matlab预测ARMA-GARCH 条件均值和方差模型

9.R语言对S&P500股票指数进行ARIMA + GARCH交易策略

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap