• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

(转)R语言 SVM支持向量机在 R 语言中的实现和使用 - sunshisonghit ...

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

(转)R语言 SVM支持向量机在 R 语言中的实现和使用

支持向量机是一个相对较新和较先进的机器学习技术,最初提出是为了解决二类分类问题,现在被广泛用于解决多类非线性分类问题和回归问题。继续阅读本文,你将学习到支持向量机如何工作,以及如何利用R语言实现支持向量机。

支持向量机如何工作?

简单介绍下支持向量机是做什么的:

假设你的数据点分为两类,支持向量机试图寻找最优的一条线(超平面),使得离这条线最近的点与其他类中的点的距离最大。有些时候,一个类的边界上的点可能越过超平面落在了错误的一边,或者和超平面重合,这种情况下,需要将这些点的权重降低,以减小它们的重要性。

这种情况下,“支持向量”就是那些落在分离超平面边缘的数据点形成的线。

无法确定分类线(线性超平面)时该怎么办?

此时可以将数据点投影到一个高维空间,在高维空间中它们可能就变得线性可分了。它会将问题作为一个带约束的最优化问题来定义和解决,其目的是为了最大化两个类的边界之间的距离。

我的数据点多于两个类时该怎么办?

此时支持向量机仍将问题看做一个二元分类问题,但这次会有多个支持向量机用来两两区分每一个类,直到所有的类之间都有区别。

工程实例

让我们看一下如何使用支持向量机实现二元分类器,使用的数据是来自MASS包的cats数据集。在本例中你将尝试使用体重和心脏重量来预测一只猫的性别。我们拿数据集中20%的数据点,用于测试模型的准确性(在其余的80%的数据上建立模型)。

1
2
3
4
# Setup
library(e1071)
data(cats, package="MASS")
inputData <- data.frame(cats[, c (2,3)], response = as.factor(cats$Sex)) # response as factor

线性支持向量机

传递给函数svm()的关键参数是kernel、cost和gamma。Kernel指的是支持向量机的类型,它可能是线性SVM、多项式SVM、径向SVM或Sigmoid SVM。Cost是违反约束时的成本函数,gamma是除线性SVM外其余所有SVM都使用的一个参数。还有一个类型参数,用于指定该模型是用于回归、分类还是异常检测。但是这个参数不需要显式地设置,因为支持向量机会基于响应变量的类别自动检测这个参数,响应变量的类别可能是一个因子或一个连续变量。所以对于分类问题,一定要把你的响应变量作为一个因子。

1
2
3
4
5
6
# linear SVM
svmfit <- svm(response ~ ., data = inputData, kernel = "linear", cost = 10, scale = FALSE) # linear svm, scaling turned OFF
print(svmfit)
plot(svmfit, inputData)
compareTable <- table (inputData$response, predict(svmfit))  # tabulate
mean(inputData$response != predict(svmfit)) # 19.44% misclassification error

径向支持向量机

径向基函数作为一个受欢迎的内核函数,可以通过设置内核参数作为“radial”来使用。当使用一个带有“radial”的内核时,结果中的超平面就不需要是一个线性的了。通常定义一个弯曲的区域来界定类别之间的分隔,这也往往导致相同的训练数据,更高的准确度。

1
2
3
4
5
6
# radial SVM
svmfit <- svm(response ~ ., data = inputData, kernel = "radial", cost = 10, scale = FALSE) # radial svm, scaling turned OFF
print(svmfit)
plot(svmfit, inputData)
compareTable <- table (inputData$response, predict(svmfit))  # tabulate
mean(inputData$response != predict(svmfit)) # 18.75% misclassification error

寻找最优参数

你可以使用tune.svm()函数,来寻找svm()函数的最优参数。

1
2
3
4
5
6
7
8
9
10
### Tuning
# Prepare training and test data
set.seed(100) # for reproducing results
rowIndices <- 1 : nrow(inputData) # prepare row indices
sampleSize <- 0.8 * length(rowIndices) # training sample size
trainingRows <- sample (rowIndices, sampleSize) # random sampling
trainingData <- inputData[trainingRows, ] # training data
testData <- inputData[-trainingRows, ] # test data
tuned <- tune.svm(response ~., data = trainingData, gamma = 10^(-6:-1), cost = 10^(1:2)) # tune
summary (tuned) # to select best gamma and cost
# Parameter tuning of \'svm\':
#   - sampling method: 10-fold cross validation
#
# - best parameters:
#   gamma cost
# 0.001  100
#
# - best performance: 0.26
#
# - Detailed performance results:
#   gamma cost error dispersion
# 1  1e-06   10  0.36 0.09660918
# 2  1e-05   10  0.36 0.09660918
# 3  1e-04   10  0.36 0.09660918
# 4  1e-03   10  0.36 0.09660918
# 5  1e-02   10  0.27 0.20027759
# 6  1e-01   10  0.27 0.14944341
# 7  1e-06  100  0.36 0.09660918
# 8  1e-05  100  0.36 0.09660918
# 9  1e-04  100  0.36 0.09660918
# 10 1e-03  100  0.26 0.18378732
# 11 1e-02  100  0.26 0.17763883
# 12 1e-01  100  0.26 0.15055453

结果证明,当cost为100,gamma为0.001时产生最小的错误率。利用这些参数训练径向支持向量机。

1
2
3
4
5
svmfit <- svm (response ~ ., data = trainingData, kernel = "radial", cost = 100, gamma=0.001, scale = FALSE) # radial svm, scaling turned OFF
print(svmfit)
plot(svmfit, trainingData)
compareTable <- table (testData$response, predict(svmfit, testData))  # comparison table
mean(testData$response != predict(svmfit, testData)) # 13.79% misclassification error
F   M
F   6   3
M  1   19

网格图

一个2-色的网格图,能让结果看起来更清楚,它将图的区域指定为利用SVM分类器得到的结果的类别。在下边的例子中,这样的网格图中有很多数据点,并且通过数据点上的倾斜的方格来标记支持向量上的点。很明显,在这种情况下,有很多越过边界违反约束的点,但在SVM内部它们的权重都被降低了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Grid Plot
 
n_points_in_grid = 60 # num grid points in a line
 
x_axis_range <- range (inputData[, 2]) # range of X axis
 
y_axis_range <- range (inputData[, 1]) # range of Y axis
 
X_grid_points <- seq (from=x_axis_range[1], to=x_axis_range[2], length=n_points_in_grid) # grid points along x-axis
 
Y_grid_points <- seq (from=y_axis_range[1], to=y_axis_range[2], length=n_points_in_grid) # grid points along y-axis
 
all_grid_points <- expand.grid (X_grid_points, Y_grid_points) # generate all grid points
 
names (all_grid_points) <- c("Hwt", "Bwt") # rename
 
all_points_predited <- predict(svmfit, all_grid_points) # predict for all points in grid
 
color_array <- c("red", "blue")[as.numeric(all_points_predited)] # colors for all points based on predictions
 
plot (all_grid_points, col=color_array, pch=20, cex=0.25) # plot all grid points
 
points (x=trainingData$Hwt, y=trainingData$Bwt, col=c("red", "blue")[as.numeric(trainingData$response)], pch=19) # plot data points
 
points (trainingData[svmfit$index, c (2, 1)], pch=5, cex=2) # plot support vectors


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap