• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

拓端tecdat|R语言矩阵特征值分解(谱分解)和奇异值分解(SVD)特征向量分析有价证券数据 ...

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

原文链接:http://tecdat.cn/?p=23973

原文出处:拓端数据部落公众号

R语言是一门非常方便的数据分析语言,它内置了许多处理矩阵的方法。 

作为数据分析的一部分,我们要在有价证券矩阵的操作上做一些工作,只需几行代码。

有价证券数据矩阵在这里

  1.  
  2.  
     
  3.  
     
  4.  
    D=read.table("secur.txt",header=TRUE)
  5.  
    M=marix(D[,2:10])
  6.  
    head(M[,1:5])

谱分解

对角线化和光谱分析之间的联系可以从以下文字中看出

  1.  
  2.  
     
  3.  
     
  4.  
    > P=eigen(t(M)%*%M)$vectors
  5.  
    > P%*%diag(eigen(t(M)%*%M)$values)%*%t(P)
  6.  
     
  7.  
     
  8.  

首先是这个矩阵的谱分解与奇异值分解之间的联系

  1.  
  2.  
    > sqrt(eigen(t(M)%*%M)$values)

和其他矩阵乘积的谱分解

  1.  
  2.  
    > sqrt(eigen(M%*%t(M))$values)

现在,为了更好地理解寻找有价证券的成分,让我们考虑两个变量 

  1.  
     
  2.  
     
  3.  
    > sM=M[,c(1,3)]
  4.  
    > plot(sM)
  5.  
     

我们对变量标准化并减少变量(或改变度量)非常感兴趣

  1.  
     
  2.  
     
  3.  
    > sMcr=sM
  4.  
    > for(j in 1:2) sMcr[,j]=(sMcr[,j]-mean(sMcr[,j]))/sd(sMcr[,j])
  5.  
    > plot(sMcr)
  6.  
     

在对轴进行投影之前,先介绍两个函数

  1.  
    > pro_a=funcion(x,u
  2.  
    + ps=ep(NA,nrow(x))
  3.  
    + for(i i 1:nrow(x)) ps[i=sm(x[i*u)
  4.  
    + return(ps)
  5.  
    + }
  6.  
     
  7.  
    > prj=function(x,u){
  8.  
    + px=x
  9.  
    + for(j in 1:lngh(u)){
  10.  
    + px[,j]=pd_cal(xu)/srt(s(u^2))u[j]
  11.  
    + }
  12.  
    + return(px)
  13.  
    + }
  14.  
     

例如,如果我们在 x 轴上投影,

  1.  
  2.  
     
  3.  
     
  4.  
    > point(poj(scr,c(1,0))
  5.  
     
  6.  
     
  7.  

然后我们可以寻找轴的方向,这为我们提供具有最大惯性的点

  1.  
    > iner=function(x) sum(x^2)
  2.  
    > Thta=seq(0,3.492,length=01)
  3.  
    > V=unlslly(Theta,functinheta)ietie(roj(sMcrc(co(thet)sinheta)))
  4.  
    > plot(Theta,V,ype=\'l\')
  5.  
     

  1.  
  2.  
     
  3.  
    > (ange=optim(0,fun(iothet) -ertieprojsMcrc(s(teta),
  4.  
    si(ta)))$ar)
  5.  
     
  6.  
     
  7.  

通过画图,我们得到

  1.  
     
  2.  
     
  3.  
    > plot(Mcr)

请注意,给出最大惯性的轴与谱分解的特征向量有关(与最大特征值相关的轴)。

  1.  
    >(cos(ngle),sin(ange))
  2.  
    [1] 0.7071 0.7070
  3.  
    > eigen(t(sMcr)%*%sMcr)

在开始主成分分析之前,我们需要操作数据矩阵,进行预测。


最受欢迎的见解

1.matlab偏最小二乘回归(PLSR)和主成分回归(PCR)

2.R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析

3.主成分分析(PCA)基本原理及分析实例

4.基于R语言实现LASSO回归分析

5.使用LASSO回归预测股票收益数据分析

6.r语言中对lasso回归,ridge岭回归和elastic-net模型

7.r语言中的偏最小二乘回归pls-da数据分析

8.r语言中的偏最小二乘pls回归算法

9.R语言线性判别分析(LDA),二次判别分析(QDA)和正则判别分析(RDA)


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
半折预售:新书-R语言数据可视化之美|ggplot2作者推荐发布时间:2022-07-18
下一篇:
R语言--数据预处理发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap