1.理解使用KNN进行分类
KNN特点
- 近邻分类器:一种懒惰学习器,即把未标记的案例归类为与它们最相似的带有标记的案例所在的类。当一个概念很难定义,但你看到它时知道它是什么,就适合用KNN分类。
- KNN优点:简单有效;数据分布无要求;训练快
- KNN缺点:不产生模型(发现特征间关系能力有限);分类慢;内存大;名义变量和缺失值需要处理
- KNN算法将特征处理为一个多维特征空间内的坐标。如标记配料为水果、蔬菜和蛋白3种类型,每种配料有脆度crunshiness和甜度sweetness 2个维度特征,体现在坐标内就是x轴、y轴。
KNN步骤
1)计算距离
距离函数度量:如欧氏距离(最短的直线距离),曼哈顿距离(类似城市街区路线)。欧氏距离公式:
假设我们已知葡萄、绿豆、坚果、橙子等食品的分类和特征(脆度和甜度),现在想知道已知特征(甜度=6,脆度=4)的西红柿属于哪一类?计算与它的几个近邻之间的欧氏距离:
若K=1,西红柿和orange最近,归类为水果;
若K=3,3个近邻为orange,grape,nuts,三者之间投票表决,2/3归为水果,因而西红柿归类为水果。
2)选择合适的K
- 偏差-方差权衡:过拟合与欠拟合之间的平衡。选择一个大的K会减少噪音数据对模型的影响,但过大会导致模型总是预测数量占大多数的那个类(几乎每个训练案例都会投票表决),而非最近的邻居;较小的K值会给出更复杂的决策边界,可更精细的拟合训练数据,但K过小则会使得噪音数据或异常值过度影响案例的分类(比如贴错标签)。
实际上,K的选取取决于学习概念的难度和训练集中案例的数量。一般,K为3-10。
- 常见的方法是将k设为训练集中案例数量的平方根。
- 另一种方法是基于多个测试数据集来测试多个K值,选择一个最好分类性能的K值。
- 还有一种不常见的方法就是选择一个较大的K,再按距离远近来给一个权威投票。
3)数据准备
- 特征标准化:将特征转换为一个标准范围内,使得特征对距离公式的贡献相对平均。如不转换,距离度量会被较大的特征值支配
- min-max标准化(0-1范围):特征的每一个值
(x-min(x))/(max(x)-min(x))
- z-score标准化(mean=0,sd=1,无边界):
(x-mean(x))/(sd(x))
- 名义变量的距离计算:利用哑变量编码,如男/女=1/0,不需要标准化(若是有序且步长相等的名义特征,则需要转换)
- 懒惰学习算法(基于实例的学习/机械学习):没有抽象化步骤,跳过了抽象过程和一般化过程。仅仅存储训练集,所以训练很快,但预测较慢。是非参数学习方法,即没有需要学习的数据参数。
2.用KNN诊断乳腺癌
1)收集数据
数据:569例细胞活检案例,每个案例32个特征(其中包含一个编号,一个癌症诊断结果:良性B/恶性M),使用KNN算法来识别肿瘤是恶性还是良性?
获取途径1:http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
获取途径2:以下链接下载wisc_bc_data.csv
链接: https://pan.baidu.com/s/1Kdj6T8mp7YKraRLxEg3u1g 提取码: 9auq
2)探索和准备数据
查看数据,注意去除ID特征。
构造训练集和测试集最好都是来自数据全集的一个有代表性的子集(事先随机顺序)。
## Example: Classifying Cancer Samples ----
## Step 2: Exploring and preparing the data ----
# import the CSV file
wbcd <- read.csv("wisc_bc_data.csv", stringsAsFactors = FALSE)
# examine the structure of the wbcd data frame
str(wbcd)
# drop the id feature
wbcd <- wbcd[-1]
# table of diagnosis
table(wbcd$diagnosis)
# recode diagnosis as a factor
wbcd$diagnosis <- factor(wbcd$diagnosis, levels = c("B", "M"),
labels = c("Benign", "Malignant"))
# table or proportions with more informative labels
round(prop.table(table(wbcd$diagnosis)) * 100, digits = 1)
# summarize three numeric features
summary(wbcd[c("radius_mean", "area_mean", "smoothness_mean")])
# create normalization function
normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x)))
}
# test normalization function - result should be identical
normalize(c(1, 2, 3, 4, 5))
normalize(c(10, 20, 30, 40, 50))
# normalize the wbcd data
wbcd_n <- as.data.frame(lapply(wbcd[2:31], normalize))
# confirm that normalization worked
summary(wbcd_n$area_mean)
# create training and test data
wbcd_train <- wbcd_n[1:469, ]
wbcd_test <- wbcd_n[470:569, ]
# create labels for training and test data
wbcd_train_labels <- wbcd[1:469, 1]
wbcd_test_labels <- wbcd[470:569, 1]
3)训练模型
K最好使用奇数,这样会减少各个类票数相等的情况发生的可能性(如西红柿示例中K=2时)。
## Step 3: Training a model on the data ----
# load the "class" library
library(class)
wbcd_test_pred <- knn(train = wbcd_train,
test = wbcd_test,
cl = wbcd_train_labels,
k = 21) #训练集案例的平方根floor(sqrt(469))
4)评估模型的性能
即评估预测分类与测试分类中已知值得匹配程度。预测设计假阳性FP比率和假阴性FN比率之间的平衡。
乳腺癌分类的假阴性比假阳性付出的代价更大,即把恶性判断为良性。
## Step 4: Evaluating model performance ----
# load the "gmodels" library
library(gmodels)
# Create the cross tabulation of predicted vs. actual
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred,
prop.chisq = FALSE)
5)提高模型性能
①尝试将min-max标准化改为z-score标准化
## Step 5: Improving model performance ----
# use the scale() function to z-score standardize a data frame
wbcd_z <- as.data.frame(scale(wbcd[-1]))
# confirm that the transformation was applied correctly
summary(wbcd_z$area_mean)
# create training and test datasets
wbcd_train <- wbcd_z[1:469, ]
wbcd_test <- wbcd_z[470:569, ]
# re-classify test cases
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test,
cl = wbcd_train_labels, k = 21)
# Create the cross tabulation of predicted vs. actual
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred,
prop.chisq = FALSE)
正确分类从98%降为95%,且假阴性从2%提升到了5%,效果更差。
②尝试不同的K值
# try several different values of k
wbcd_train <- wbcd_n[1:469, ]
wbcd_test <- wbcd_n[470:569, ]
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=1)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=5)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=11)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=15)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=21)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=27)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)
以上结果中,虽然K=1时的假阴性率最低,但是以增加假阳性结果为代价的。注意不能为了过于准确预测测试集来随意调整方法。
尽管kNN算法简单,但它能处理复杂的任务。
机器学习与R语言系列推文汇总:
【机器学习与R语言】1-机器学习简介
【机器学习与R语言】2-K近邻(kNN)
【机器学习与R语言】3-朴素贝叶斯(NB)
【机器学习与R语言】4-决策树
【机器学习与R语言】5-规则学习
【机器学习与R语言】6-线性回归
【机器学习与R语言】7-回归树和模型树
【机器学习与R语言】8-神经网络
【机器学习与R语言】9-支持向量机
【机器学习与R语言】10-关联规则
【机器学习与R语言】11-Kmeans聚类
【机器学习与R语言】12-如何评估模型的性能?
【机器学习与R语言】13-如何提高模型的性能?
请发表评论