• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Matlab-10:Ritz-Galerkin方法求解二阶常微分方程

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

一、代数多项式法:

 1 tic;
 2 clear
 3 clc
 4 % N=input(\'please key in the value of \'\'N\'\'\');
 5 N=10;
 6 M=100;
 7 h=1/M;
 8 X=0:h:1;
 9 accurate_fun=inline(\'x.^2 - (2*exp(x))/(exp(1) + 1) - (2*exp(-x)*exp(1))/(exp(1) + 1) + 2\');
10  f=inline(\'x.^2-x\');
11  phi=inline(\'x.*(1-x).*x.^(i-1)\',\'i\',\'x\');
12  diff_phi=inline(\'i*x.^(i-1)-(i+1)*x.^i\',\'i\',\'x\');
13  for j=1:N
14      for i=1:N
15 A(i,j)=quad(@(x)phi(i,x).*phi(j,x)+diff_phi(i,x).*diff_phi(j,x),0,1);
16      end
17      b(j,1)=quad(@(x) phi(j,x).*f(x),0,1);
18  end
19  C=A\b;
20 syms x;
21  Un=0;
22 for i=1:N
23 Un=Un+C(i)*phi(i,x);
24 end
25 Un=Un+x;
26  numerical= double(vpa(subs(Un,\'x\',X)));
27  accurate=accurate_fun(X);
28  subplot(1,2,1)
29  plot(X,numerical,\'r -\',X,accurate,\'b >\');
30   title(\'numerical VS accurate\');
31  legend(\'numerical\',\'accurate\');
32  grid on;
33   subplot(1,2,2);
34   plot(X,numerical-accurate,\'g\');
35   title(\'error\');
36   grid on;
37  toc;

 

 

二、三角函数法:

 1 tic;
 2 clear
 3 clc
 4 % N=input(\'please key in the value of \'\'N\'\'\');
 5 N=10;
 6 M=100;
 7 h=1/M;
 8 X=0:h:1;
 9 accurate_fun=inline(\'x.^2 - (2*exp(x))/(exp(1) + 1) - (2*exp(-x)*exp(1))/(exp(1) + 1) + 2\');
10  f=inline(\'x.^2-x\');
11  phi=inline(\'sin(i*pi*x)\',\'i\',\'x\');
12  diff_phi=inline(\'i*pi*cos(i*pi*x)\',\'i\',\'x\');
13  for j=1:N
14      for i=1:N
15 A(i,j)=quad(@(x)phi(i,x).*phi(j,x)+diff_phi(i,x).*diff_phi(j,x),0,1);
16      end
17      b(j,1)=quad(@(x) phi(j,x).*f(x),0,1);
18  end
19  C=A\b;
20  syms x;
21  Wn=0;
22 for i=1:N
23 Wn=Wn+C(i)*phi(i,x);
24 end
25 Un=Wn+x;
26 numerical=vpa(subs(Un,\'x\',X));
27 accurate=accurate_fun(X);
28 subplot(1,2,1)
29 plot(X,numerical,\'r -\',X,accurate,\'g ^\');
30 title(\'Ritz Galerkin method\');
31 legend(\'numerical solution\',\'accurate solution\');
32 grid on;
33 subplot(1,2,2)
34 plot(X,numerical-accurate,\'b\');
35 title(\'error\');
36 grid on;
37 toc;

 

 

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
DelphiTXLSReadWriteII公式计算发布时间:2022-07-18
下一篇:
Delphi中本年、本月、本周第一天和最后一天发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap