• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

人脸对齐matlab实现-FaceAlignment 3000fps - 鹅要长大

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

人脸对齐matlab实现-FaceAlignment 3000fps

前言

最近研读了孙剑团队的Face Alignment at 3000fps via Regressing Local Binary Features这篇paper,基于matlab进行实现。

实现原理:

包含训练和测试两个阶段;

1.基于标准随机森林回归算法独立地学习每个特征点的局部二值特征,连接形成每张图像的特征;

2.基于双坐标下降法学习全局线性回归;

论文下载:

http://www.jiansun.org/papers/CVPR14_FaceAlignment.pdf

matlab实现步骤:

1.源代码地址(含有实现方法的英文说明):

https://github.com/jwyang/face-alignment

2.环境:

官方:win64 + matlab2014a;

个人:win64 + matlab2014b;

3.下载数据库:

数据库下载网址:http://ibug.doc.ic.ac.uk/resources/facial-point-annotations

可以下载需要的样本库,不过发现300W四个文件夹中的数据完全一样;

4.配置训练样本函数的依赖库liblinear.

从网址http://www.csie.ntu.edu.tw/~cjlin/liblinear/可以直接下载liblinear库文件.

如果系统是windows64可以直接将里边windows文件夹中的文件全部拷贝到创建的matlab工程目录下;

5.准备数据.

将数据库解压到工程目录新建的datasets文件夹中,细节可参见train_model.m文件.

6.train_model.m文件中代码表示读入的训练样本数据的文件是Path_Image.txt,所以进入cmd控制台change目录到datasets文件夹中的一个数据库中,比如.\afw,然后输入命令dir /b/s/p/w *.jpg>Path_Images.txt,这是将所有jpg格式的文件名都输入到Path_Images.txt文件中,其他数据库文件的获取类似,注意图片格式和路径即可.

7.训练样本库.

1)在matlab工程目录下创建一个m文件,命名为train_3000fps.m;

filepath_ranf = \'./ranf.mat\';
filepath_ws = \'./ws.mat\';
lbfmodel = train_model_func({ \'afw\' });
ranf = lbfmodel.ranf;
ws = lbfmodel.Ws;
save(filepath_ranf, \'ranf\');
save(filepath_ws, \'ws\');

2)基于train_model.m重新生成train_model_func.m的函数形式;

二者的主体内容完全一样,train_model_func.m只需要在函数开始部分添加一行函数头即可;

function LBFRegModel = train_model_func( dbnames )

然后执行train_3000fps.m文件开始进行训练,训练时间可能会比较长,训练完成之后会得到ranf.mat和ws.mat两个文件.

8.测试结果.

按照步骤6的方法生成要进行测试的数据库的Path_Image.txt文件,然后在matlab工程目录下创建test_3000fps.m文件,

filepath_ranf=\'./ranf.mat\';
filepath_ws=\'./ws.mat\';

r=load(filepath_ranf);
w=load(filepath_ws);
ranf=r.ranf;
ws=w.ws;
t.ranf=ranf;
t.Ws=ws;

test_model_func({\'ibug\'},t);

  

同时基于test_model.m重新生成test_model_func.m文件,参考步骤7所示,

function test_model_func( dbnames, LBFRegModel )

执行test_3000fps.m文件即可完成测试过程.

9.测试结果的显示;

将测试文件改写为如下,其中文件路径和名称可按照自己的想法进行设置;

filepath_ranf=\'./ranf.mat\';
filepath_ws=\'./ws.mat\'; 

r=load(filepath_ranf);
w=load(filepath_ws); 
ranf=r.ranf;
ws=w.ws; 
t.ranf=ranf;
t.Ws=ws;

% test_model_func({\'ibug\'},t);
% %查看结果
[predshapes, Data] = test_model_func({\'ibug\'}, t);
[X, Y, N] = size( predshapes );
for i=1:N
   shapes=predshapes(:,:,i);
   img=Data{i}.img_gray;
   %drawshapes(img, [shapes,Data{i}.shape_gt]);
   drawshapes(img, Data{i}.shape_gt);
   rectangle(\'Position\',  Data{i}.bbox_facedet, \'EdgeColor\', \'b\');
   name = [\'.\ibug\\', int2str(i),\'_1\'];
   print(gcf, \'-dpng\', name);
   hold off;
%    pause;
end

  

需要改写以下几处:

1)测试文件的test_model_func.m文件;

function [predshapes, Data] = test_model_func( dbnames, LBFRegModel )

2)test_model_func.m文件中调用globalprediction函数部分的输出格式作出一些修改;

  [Data, predshapes] = globalprediction(binfeatures, Ws{min(s,  params.max_numstage)}, Data, Param, min(s,  params.max_numstage));    

3)修改globalprediction.m文件的函数头;

%function Te_Data = globalprediction(binaryfeatures, W, Te_Data, params, stage)
function [Te_Data, predshapes] = globalprediction(binaryfeatures, W, Te_Data, params, stage)

另外,可以更改drawshapes.m文件,得到你想要的显示类型。

实现结果

基于matlab按照以上步骤实现,速度没有论文中的3000fps那么快,当然也可能是系统优化等方面的问题,精度相比sdm稍逊一些;

另外,针对红外图像的landmarks,与一般图像相比,SDM的效果没差,但是LBF的效果就差一些;

接下来也会实现c++版本,测试一下效果;

参考

1.http://blog.csdn.net/wangjian8006/article/details/42004717

2.GitHub:https://github.com/jwyang/face-alignment

3.http://blog.csdn.net/xiamentingtao/article/details/50821972

4.大牛博客


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
让职场人心惊胆战的职场“黑话大全” 您知多少? - 疯狂delphi ...发布时间:2022-07-18
下一篇:
delphi的万能数据库操作发布时间:2022-07-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap