• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

ben519/MLPB: Machine Learning Problem Bible | Problem Set Here >>

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

ben519/MLPB

开源软件地址(OpenSource Url):

https://github.com/ben519/MLPB

开源编程语言(OpenSource Language):

R 76.7%

开源软件介绍(OpenSource Introduction):

Machine Learning Problem Bible (MLPB)

MLPB is meant to become an organized collection of machine learning problems and solutions. In practice, machine learning often goes like this

I have this problem... I need to classify something as A, B or C using a combination of numeric and categorical features. If I could find a similar problem, maybe I could modify the solution to work for my needs.

This is where MLPB steps in. Want to see machine learning problems with sparse data? Got it. Want to compare Scikit-learn’s RandomForestRegressor with R’s randomForest? Got it. Need an example of predicting a ranked target variable? Got it.

How It Works

MLPB contains a directory of Problems. Within each problem is a designated _Data directory and one or more scripts with a solution to the problem. This looks something like

Problems/

  Classify Iris Species/
    _Data/
      iris.csv
      train.csv
      test.csv
    predict_species_xgb.R
    
  Predict NFL Game Winner/
    _Data/
      train.csv
      test.csv
    random_forest_model.py
    random_forest_model.R

Most of these directories should include a README.md file providing details about the problem, data, and solution(s). You can browse all the problems in MLPB's wiki. You can also search for problems with specific tags like [mult-class classification], [sparse-data], [NLP], etc.

Contact

If you'd like to contact me regarding bugs, questions, or general consulting, feel free to drop me a line - [email protected]

Support

Found this free repo helpful? Show your support. Check out GormAnalysis Courses and buy some merch! GormAnalysis Shop




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap